
CS/ECE 552: Introduction to Computer Architecture

Prof. David A. Wood

Midterm Exam
October 19, 2005

7:15-9:15pm, 1221 CSS
Approximate Weight: 25%

CLOSED BOOK
ONE SHEET OF NOTES

NAME: ____SOLUTIONS________

DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO!

Read over the entire exam before beginning. Verify that your exam includes all 9 pages. It is a

long exam, so use your time carefully. Budget your time according to the weight of the questions,

and your ability to answer them. Limit your answers to the space provided, if possible. If not,

write on the BACK OF THE SAME SHEET. Use the back of the sheet for scratch work. WRITE

YOUR NAME ON EACH SHEET.

Problem
Possible
Points

Points

Problem 1 10

Problem 2 10

Problem 3 15

Problem 4 30

Problem 5 25

Total 90

NAME: _______________________________________
Problem 1: (10 points)

Part A: (2 points)

Define the performance metric MIPS and explain why it is not a good metric for comparing two

different machines.

MIPS = Millions of Instructions per Second

This metric ignores the “instructions/program” component of the Iron Law of performance.
For example, one VAX instruction may do the same work as many MIPS instructions.

Part B: (2 points)

H&P state that “More powerful instructions mean higher performance” is a fallacy. Explain why.

A powerful instruction, such as the VAX CALLS instruction, may do a lot of work. In fact, it
may do more work than required by the particular compiler’s subroutine convention. A
sequence of simpler instructions may be able to do the required work in less time (in fact,
the VMS operating system that originally ran on the VAX did not use the CALLS instruction).

Part C: (2 points)

Instructions are stored in memory, which in MIPS requires a 32 bit byte address. Why is it OK for

implementations to only store 30 bits in the program counter?

MIPS instructions are always 4 bytes and aligned to a 4-byte boundary. Thus the low-order
two bits are ALWAYS zero. We can optimize these bits away.

Part D: (2 points)

When is throughput not equal to 1/latency?

Throughput = 1/latency when there is no overlap between jobs (instructions).

Throughput > 1/latency when execution overlaps, such as in a pipeline

Throughput < 1/latency when there is no overlap and there is additional overhead
between servicing requests (as is the case in memory controllers).

Part E: (2 points)

Which mean should be used to average rates (e.g., jobs per hour)? Briefly explain.

Harmonic mean = N / sum (i=1 to N) 1/ri

Remember that time is always what matters. Since a rate is proportional to 1/time, we
want to take the recipirocal to get time, compute the arithemetic mean, and then take the
recipirocal to convert back to a rate.
Page 2 of 9

NAME: _______________________________________
Problem 2: (10 points)

Part A: (5 points)

Most compiler writers wish the MIPS architecture had 64 or even 128 registers. Assume we want

to design a new MIPS-2005 architecture with 64 registers, but preserve the general structure of

the instruction formats (but not the sizes of all the fields). What might the MIPS-2005 instruction

formats look like?

Part B: (5 points)

What are the most significant changes in what the new MIPS-2005 ISA can express?

Much smaller shift distance (since the shamt field shrunk from 5 to two bits)

Fewer opcodes (if you shrunk the opcode or funct field)

Smaller branch offset (since immediate field shrunk)

Smaller immediate values (since the immediate field shrunk)

Can no longer load a 32-bit immediate in 2 instructions

More registers available for the compiler, reducing loads and stores

opcode

opcode

opcode

rs rt rd

shamt

funct
31 26 25 20 19 14 13 8 7 6 5 0

R-Format

I-Format

rs rt

31 26 25 20 19 14 13 0

immediate

address

31 26 25 0

J-Format
Page 3 of 9

NAME: _______________________________________
Problem 3: (15 points)

Consider two implementations A and B of the MIPS instruction set, both built using the same

technology. Machine A uses a simple single cycle datapath design and has a CPI of 1.0 with a

cycle time of 1000ps. Machine B uses a multicycle datapath to reduce the cycle time to 250ps, but

branch instructions take 3 cycles, load and store instructions take 5 cycles, and all other instruc-

tions take 4 cycles.

Part A: (4 points)

For the two workloads below, compute the CPI for the multicycle datapath.

Part B: (5 points)

Which machine has the best performance for each workload? Show your work.

Part C: (6 points)

An alternative multicycle design can reduce the cycle time to 200ps, but requires increasing the

delay of loads and stores to 6 cycles. Should you make this change? Does this change which

machine has the best performance? Show your work.

Workload % Branchs
% Load/

store
% Other CPIB

W1 15% 35% 50% 4.2

W2 10% 50% 40% 4.4

Workload
Better

machine

W1 A

W2 A

Workload CPIB
Better

machine

W1 4.55 new B

W2 4.9 new B
Page 4 of 9

NAME: _______________________________________
Problem 4: (30 points)

Part A: (15 points)

A 16-bit carry-lookahead adder composes multiple 4-bit carry-lookahead blocks into a two level

tree structure.

For the table below, write the boolean equation for each signal listed. Compute the delays using

the model below. The worst case delay is the critical path from any input to that equation to the

output. The total delay is the critical path from the basic inputs ai and bi, which are assumed to

change at time 0. Assume that you have only AND and OR gates available, but that each gate

generates both the true output f and its complement f. The delay is computed using the formula

delay = (8 + n2)τ, where n is the number of inputs to the gate. Thus a 2-input AND gate has delay

12τ and the logic function f = ab + cde has delay 29τ (2-input OR with delay 12τ plus a 3-input

AND with delay 17τ).

Signal Equation Worst case delay Total delay

p2 a2 + b2 12 t 12 t

c2 g1 + p1g0 + p1p0c0 34 t 46 t

c3 g2 + p2g1 + p2p1g0 + p2p1p0c0 48 t 60 t

g3-0 g3 + p3g2 + p3p2g1 + p3p2p1g0 48 t 60 t

c8 g7-4 + p7-4g3-0 + p7-4p3-0c0 34 t 94 t

c12 g11-8 + p11-8g7-4 + p11-8p7-4g3-0 + p11-8p7-4p3-0c0 48 t 108 t

s2 (a2b2 + a2b2)c2 + (a2b2 + a2b2)c2 24 t 70 t

s8 (a8b8 + a8b8)c8 + (a8b8 + a8b8)c8 24 t 118 t

s14 (a14b14 + a14b14)c214+ (a14b14 + a14b14)c14 24 t 166 t

Second-level lookahead

first-level lookahead

4-bit CLA4-bit CLA4-bit CLA

g3-0 p3-0

c0

c4

p0g0

s0 a0 b0
Page 5 of 9

NAME: _______________________________________
Part B: (5 points)

Suppose the delay model was changed to be delay = (1+n2)τ. Would this change the optimal way

to structure the carry-lookahead adder? Explain.

YES!

Three two-input gates in a tree, e.g., f = (ab)(cd), would have delay 10, while a 4-input
gate, e.g., f = abcd, would have delay 17. Thus it would be best to use two input gates
rather than flatten into a two-level hierarchy. Specifically,

c3 = g2 + p2(g1 + p1(g0 + p0 c0)) will have delay 30, while

c2 = g2 + p2g1 + p2p1g0 + p2p1p0c0 will have delay 34

Part C: (5 points)

Overflow occurs when the result of an arithmetic operation cannot be represented. Consider the

subtraction of two two’s complement numbers:

S<31:0> = A<31:0> - B<31:0>

Write the boolean equation for detecting overflow.

Out1 = A<31>B<31>S<31> + A<31>B<31>S<31>

Part D: (5 points)

An alternative way to organize a carry-lookahead adder is to use propagate and kill, rather than

propagate and generate. The kill signal ki is defined to be one if and only if the carry out of bit i

will be zero regardless of the carry in. Assume the inputs are ai, bi, and the carry in ci. Write the

boolean equations for propagate and kill signals pi and ki in terms of the inputs ai and bi. Write

the boolean equations for each of the outputs sum si and carry out ci+1 in terms of pi, ki, and ci.

ki = aibi
pi = ai xor bi
si = pi xor ci
ci+1 = (ci + pi) ki
Page 6 of 9

NAME: _______________________________________
Problem 5: (25 points)

Your single-cycle processor seems to be executing random instructions. You need to find out

why. On the next page is a picture of your datapath (note that this is somewhat different from the

datapath used in class) and the control table is below. You suspect that the controller is broken.

You may assume that the datapath modules (e.g., the ALU, etc.) work correctly.

You may assume the following are correct:

• The register file and memory both write on the rising clock edge when their respective con-

trol signals, RegWr and MemWr, are asserted.

• The extender with zero extend if the ExtOp bit is 0 and sign extend when the ExtOp bit is 1.

• The data memory reads asynchronously but has synchronous writes.

• The =0? module will output 1 if all the input bits are 0, and will output 0 otherwise.

The ALUctr encoding is as follows:

For the following stream of instructions, what does your broken processor actually do? The first

instruction has already been done for you as an example. If there is more than one possibility,

please list all of them (note that this may be a different instruction, correct behavior, or an unde-

fined instruction). If the incorrect result does not match a valid MIPS instruction, please give a

sequence of MIPS instructions that correspond to the behavior. Also give a very brief explainta-

tion of your possibilities. For simplicity, we have used the actual register numbers rather than

names.

Opcode PCSrc Bequal RegDst Reg Wr ExtOp ALUsrc ALUCtr MemWr
Mem
ToReg

addu 0 0 0 1 1 X 0 0 0

subu 0 0 1 1 X 0 0 0 0

ori 0 0 1 1 0 X 2 0 0

lw 0 0 1 1 1 1 0 1 1

sw 0 0 X 0 0 1 0 1 X

beq 0 1 X 0 X 0 3 0 X

jr 2 1 X 0 X X X 0 X

Control bits Operation

0 add

1 sub

2 or

3 xor
Page 7 of 9

ntrol

0

1

taIn

Address
DataOut

emWr

rEn

MemToReg

= 0?

ata Mem

ll buses are 32-bits
ll control signals are 1 -bit,
nless otherwise indicated
Instr
Mem

32
-b

it
P

C

A
dd

er
A

dd
er

PC Ext

imm16

address

M
ux

0

1

2

OR

PCSrc<0>
PCSrc<1>

AND
Bequal

Co

I<31:0>
I<15:0> imm16

I<15:11>
Rd

I<20:16>
Rt

I<25:21> Rs

A
LU0

1

Reg File

Rw RA RB

Rs Rt

Rd RtRegDst

A

B

Da

WData

RegWr

WrEn

M

W

ALUctr<2>ALUsrc

E
xtender

ExtOp

imm16

4

D

0 1

A

Datapath

A
u

Data

NAME: _______________________________________

le.

ls
on-

e

Original Instruction Possible behavior(s)

addu $1, $2, $0

addu $1, $2, $0 (if aluSrc = 0 —Correct behavior)

addiu $1, $2, 33 (is aluSrc = 1 — Incorrect behavior)

subu $4, $5, $6

addu $6, $5, $6 (incorrect behavior, both regDst and ALUctr are wrong)

ori $7, $8, 0x0025

or $7, $8, $7 (if AluSrc = 0, incorrect behavior)

ori $7, $8, 0x0025 (if AluSrc = 1, correct behavior)

beq $11, $12, 24

correct behavior (even though AluCtr is xor, it still works since we are testing for
equality)

sw $10, -12($31)

sw $10, 0x0000FFF4($31) (ExtOp is wrong, so displacement is zero extended
instead of sign extended -- incorrect behavior)

lw $9, -16($29)

lw $9, -16($29) and
sw $9, -16($29)
(Because MemWr is asserted, a load AND a store are performed in the same cyc
This is effectively an atomic swap instruction -- incorrect behavior).

EXTRA CREDIT:
jr $9

jr $9 (most of the time this operates correctly, but depending upon the control signa
and the data values in the registers, it may be undefined because it will select the n
existent port 3 of the mux. For example, if AluSrc=0, ALUctr=3, and $9=0, then it
will read out register $0 on the A port (which is 0) and compare to $9, resulting in th
condition being true and undefined behavior.)
Page 9 of 9

	CS/ECE 552: Introduction to Computer Architecture
	Prof. David A. Wood
	Midterm Exam October 19, 2005 7:15-9:15pm, 1221 CSS Approximate Weight: 25% CLOSED BOOK ONE SHEET...
	DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO!

	Problem 1: (10 points)
	Part A: (2 points)
	Part B: (2 points)
	Part C: (2 points)
	Part D: (2 points)
	Part E: (2 points)

	Problem 2: (10 points)
	Part A: (5 points)
	Part B: (5 points)

	Problem 3: (15 points)
	Part A: (4 points)
	Part B: (5 points)
	Part C: (6 points)

	Problem 4: (30 points)
	Part A: (15 points)
	Part B: (5 points)
	Part C: (5 points)
	Part D: (5 points)

	Problem 5: (25 points)

