
CS/ECE 552: Introduction to Computer Architecture

Prof. David A. Wood

Midterm Exam
March 6, 2012

7:15-9:15pm, B371 Chemistry
Approximate Weight: 25%

CLOSED BOOK
ONE SHEET OF NOTES

NAME: _______________________

DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO!

Read over the entire exam before beginning. Verify that your exam includes all 8 pages. It is a long exam,
so use your time carefully. Budget your time according to the weight of the questions, and your ability to
answer them. Limit your answers to the space provided, if possible. If not, write on the BACK OF THE
SAME SHEET. Use the back of the sheet for scratch work. WRITE YOUR NAME ON EACH SHEET.

Problem
Possible
Points

Points

Problem 1 15

Problem 2 15

Problem 3 20

Problem 4 25

Problem 5 25

Total 100

Solution

NAME: _______________________________________

Page 2 of 8

Problem 1: (15 points)

Part A: (3 points)

What is the iron law of performance?

Time/Program = Instructions/Program * Cycles/Instruction * Time/Cycle

Part B: (3 points)

In an ideal world, a processor with an N-stage pipeline would execute with a clock frequency N times
faster than a single-cycle (i.e., non-pipelined) processor. Give two reasons why the clock frequency of a
real pipelined processor would be less than N times faster.

Pipeline latch latency

Load imbalance between pipeline stages

Additional logic, e.g., muxes for data forwarding

Part C: (3 points)

In an ideal world, a pipelined processor would have a CPI of 1.0. Give two examples of why a real pipe-
lined processor would have a CPI greater than one.

Control hazards, e.g., branches, may stall execution or squash instructions

Data hazards, e.g., load-use hazards, may stall execution

Part D: (3 points)

Explain the difference between a dependence and a hazard.

A dependence is a property of the instructions in a program, for example a true dependence arises when one
instruction uses the value produced by an earlier instruction.

A hazard is a potential problem in a pipeline that may arise from a dependence. For example, a true data
dependence causes a hazard when the value produced by the earlier instruction is not yet available in the reg-
ister file when the dependent instruction attempts to fetch it.

Part E: (3 points)

The MIPS instruction set has fixed size instructions with only three instruction formats with key fields
always occuring in the same place. Explain why these two properties make it easier to implement a pipe-
lined processor. Give brief examples.

Fixed size instructions means that it is, in the absence of a control hazard, possible to determine the next
instruction before decoding the current instruction. This allows fetch of instruction i+4 to proceed in parallel
with the decode of instruction i.

Fixed field placement makes it easier to decode instructions in parallel and perhaps partially overlap execu-
tion. For example, in MIPS it is possible to read the register file in parallel with instruction decode because
the source register specifiers are always in the same place.

NAME: _______________________________________

Page 3 of 8

Problem 2: (15 points)

Part A: (5 points)

Indicate the true data dependences in the following MIPS code sequence:

add $1, $2, $3

lw $4, 0($1)

addi $5, $1, 100

sw $4, 0($5)

or $4, $3, $5

Part B: (5 points)

What is meant by an anti-dependence? Are there any examples of anti-dependences in the code above?

An anti-dependence occurs between an instruction that reads a register (or memory location) and a subse-
quent instruction writes a new value to the same location. Equivalently, two instructions have an anti-depen-
dence if swapping their order would result in a true dependence.

An anti-dependence exists between the sw instruction, which reads $4, and the or instruction, which over-
writes $4 with a new value.

Part C: (5 points)

What problems, if any, do true and anti-dependences cause in the MIPS 5-stage pipeline that we have ana-
lyzed in class? Explain.

True dependences require that the data value produced by one instruction is passed to the consuming instruc-
tion. Since registers are read in decode (D) and written in writeback (W), there is a potential read-after-write
(RAW) hazard. This can be resolved by stalling the pipeline or, in many cases, forwarding the value (except
in the load-use case).

Anti-dependences are not a problem for register accesses because all instructions execute in order and
always read the register file before they write it (i.e., read in Decode and write in Writeback), thus prevent-
ing a later instructions write from occuring before an earlier instructions read. They are not a problem for
memory access because instructions are executed in order and all memory operations occur in the memory
(M) stage.

A common misunderstanding is that “sequential semantics” alone prevents anti-dependences from causing
hazards. Out-of-order processors still must provide sequential semantics, even though they rearrange the
order of instruction execution (subject to maintaining dependence order).

NAME: _______________________________________

Page 4 of 8

Problem 3: (20 points)

Consider two implementations A and B of
the MIPS instruction set, both built using the
same technology, but using different pipe-
lines. Both machines have a base CPI of 1.0,
but have different cycle times and different
stalls for control and data hazards. In partic-
ular, the pipelines stall differently for taken
and not-taken branches, when loads are fol-
lowed by dependent instructions, and
Machine B stalls a cycle on all stores.

Part A: (12 points)

For the two workloads below, assume that 60% of branches are taken and 45% of loads are followed by a
dependent instruction.

Write the (symbolic) equations for the stall cycles per instruction (SCPI) for each type of stall:

Compute the SCPIs for both datapaths.

Workload
%

Branches
% Loads % Stores % Other

W1 15% 30% 15% 40%

W2 20% 35% 10% 35%

SCPIbranch-taken %branches * %taken branches * stall cycles per taken branch

SCPIbranch-nottaken %branches * (1 - %taken branches) * stall cycles per not-taken branch

SCPIload-use %loads * %instructions dependent on loads * stall cycles per dependent load

SCPIstores % stores * stall cycles per store

Machine A Machine B

W1 W2 W1 W2

SCPIbranch-taken .15 * .6 * 1
.09

.2 * .6 * 1
.12

.15 * .6 * 4
.36

.2 * .6 * 4
.48

SCPIbranch-nottaken .15 * .4 * 0
0

.20 * .4 * 0
0

.15 * .4 * 1
.06

.2 * .4 * 1
.08

SCPIload-use .3 * .45 * 1
.135

.35 * .45 * 1
.1575

.3 * .45 * 3
.405

.35 * .45 * 3
.4725

SCPIstores 0 0 .15 .1

Machine A Machine B

Cycle time 400ps 240ps

Taken branch stalls 1 4

Not-taken branch stalls 0 1

Load-use stalls 1 3

Store stalls 0 1

NAME: _______________________________________

Page 5 of 8

Compute the overall CPI for both datapaths.

Part B: (4 points)

Which machine is faster? Compute the Speedup of Machine B over Machine A (i.e., Machine A is the
“old” machine). Show your work.

SpeedupB = TimeA / TimeB = (N x CPIA x 400ps) / (N x CPIB x 240ps)

W1: 1.225 * 400 / 1.975 * 240 = 1.034

W2: 1.2775 * 400 / 2.1325 * 240 = 0.998

Part C: (4 points)

The slower machine would perform better with a faster clock. How fast would the slower machine’s clock
need to be to have the same performance as the faster machine? Show your work.

CPIslow * Cycleslow = CPIfast * Cyclefast

W1: 1.225 * C = 1.975 * 240

W2: 1.2775 * 400 = 2.1325 * C

Machine A Machine B

W1 W2 W1 W2

CPI 1.225 1.2775 1.975 2.1325

Workload Speedup of B
Faster

machine?

W1 1.034 B

W2 0.98 A

Workload
Slower

Machine
Clock cycle time to achieve

equal performance

W1 A 387ps

W2 B 240ps

NAME: _______________________________________

Page 6 of 8

Problem 4: (25 points)

A 16-bit carry-lookahead adder composes multiple 4-bit carry-lookahead blocks into a two level tree structure.

Write the boolean equation for each output signal listed in the table below. The equations should be opti-
mized to minimize the delay from module inputs to outputs, where the modules are the full adder (FA), and
the first- and second-level lookahead blocks. Compute the delays using the model below. The worst case
module delay is the critical path from any input of a module to the output. The critical path delay is the
critical path from the basic inputs ai, bi and c0, which are assumed to change at time 0. Assume that you
have only AND and OR gates available, but that each gate generates both the true output f and its comple-
ment f. You also have the complements of the basic inputs available as well. The delay is computed using
the formula delay = (4 + 4n)τ, where n is the number of inputs to the gate. Thus a 2-input AND gate has
delay 12τ and the logic function f = ab + cde has delay 28τ (2-input OR with delay 12τ plus a 3-input
AND with delay 16τ).

Signal Equation
Worst case

module delay
Critical path

delay

p3 = a3 + b3 12τ 12τ

g3 = a3b3 12τ 12τ

c4 = g3-0 + p3-0c0 24τ 64τ

c8 = g7-4 + p7-4g3-0 + p7-4p3-0c0 32τ 80τ

g11-8 = g11 + p11g10 + p11p10g9 + p11p10p9g8 40τ 52τ

p11-8 = p11p10p9p8 20τ 32τ

c10 = g9 + p9g8 + p9p8c8 32τ 112τ

s10 = (a10b10 + a10b10)c10 + (a10b10 + a10b10)c10 48τ 136τ

c12 = g11-8 + p11-8g7-4 + p11-8p7-4g3-0 + p11-8p7-4p3-0c0 40τ 88τ

c15 = g14 + p14g13+ p14p13g12 + p14p13p12c12 40τ 128τ

s15 = (a15b15 + a15b15)c15 + (a15b15 + a15b15)c15 48τ 152τ

Second-level lookahead

first-level lookahead

g3-0 p3-0

c0c4

p0g0

s0 a0 b0

g7-4 p7-4

s1 a1 b1

c1p1g1

FA FA FA FA

c8c12

s2 a2 b2

NAME: _______________________________________

Page 7 of 8

Problem 5: (25 points)

High performance datapaths use bypass paths (also known as data forwarding logic) to reduce pipeline
stalls. However, bypass paths are relatively expensive, especially in some wire constrained technologies.
To reduce the cost (and potential cycle time impact), some architects have explored omitting some of the
possible bypass paths. Consider the datapath illustrated above (note that the PC update logic and all control
logic is intentionally omitted). This pipelined datapath is similar to the one in the book, but has several dif-
ferences including limited bypass paths. BE SURE TO STUDY THE DATAPATH CAREFULLY! Assume
that the register file internally bypasses the value, so that if register $i is read and written in the same cycle,
then the read returns the new value. Assume that the control logic bypasses the data as soon as possible
using the given forwarding data paths, and stalls in decode otherwise. You may NOT add additional data
paths.

In this problem, you will look at how a program snippet performs on this pipeline. Recall that R-format
instructions have the form:

opcode rd, rs, rt

and I-format instructions have the form
opcode rt, imm(rs)

or
opcode rt, rs, imm

Use the table on the next page to show how the given instruction sequence flows through the pipeline and
where stalls are necessary to resolve hazards.

In
st

r
M

em
or

y

R
eg

ist
er

 F
ile

rs

rt

sign
ext

D
at

a
M

em
or

y

rd
A

L
U

P
C

FD DX XM MW

imm

da
ta

 in

rs

rt

R
T

m
u

x
R

S
m

u
x

ad
dr

0

1

2

0

1

2

NAME: ______________________________________

Page 8 of 8

Consider the code and pipeline schedule below. Show the execution timing of this code on the pipeline above.

For each cycle, specify the correct values for RSmux select and RTmux select (specify X for a “don’t care”).

For each cycle where a stall occurs, explain why below.

Cycle 5: Register $4 in the ‘and’ instruction is dependent on the preceding ‘sub’ instruction. Because $r is the ‘rt’ register, it cannot forward from the MW latch. Instead, it
must stall in decode until it can read it from the register file (only a single cycle), which also stalls the fetch of the ‘lw’ instruction.

Cycle 8: Register $8 in the second ‘add’ instruction uses the value produced by the ‘lw’ instruction. Loads don’t produce their value until the end of the M stage, requiring
a load-use stall for the ‘add’ in this cycle. This also stalls the ‘sw’ instruction in fetch.

Cycle 9: Register $8 in the second ‘add’ instruction depends upon the value produced by the ‘lw’ instruction. The value is ready in the MW pipeline latch, but there is no
bypass path to get this from the MW latch to the ‘rt’ port of the alu.

Cycle 12: This datapath has a bug, where the RTmux must be set to both 0 and 2 in the same cycle. Up to 5 bonus points for identifying this problem and a possible solution.

Cycle

Instructions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add $1, $2, $3 F D X M W

sub $4, $1, $5 F D X M W

or $8, $1, $4 F D X M W

and $7, $8, $4 F D D X M W

lw $8, 4($7) F F D X M W

add $1, $2, $8 F D D D X M W

sw $1, 4($7) F F F D X M W

RSmux select X X 0 2 1 X 1 2 X X 0 0 X X

RTmux select X X 1 1 0 X 1 2 X X 1 0/2 X X

