From IEEE 754 to decimal equivalent

In this example, given a number in the IEEE 754 format, we will see how we get the decimal equivalent

IEEE representation:

00000100000001001001000010010110

The IEEE 754 single precision representation includes
(a) 1 sign bit (MSB)
(b) 8 bits for the exponent. We use excess -127 here. That is, you ADD 127 to your exponent and store as a pure (unsigned) binary. When the number is re-created for use later, 127 will be subtracted from the exponent.
(c) 23 bits for the mantissa (i.e., the fractional part)

This is to enable us to represent numbers in the format $(-1)^{5} \times c \times b^{9}$ Where ' s ' is the sign bit, ' c ' is the significand and ' q ' is the exponent

Returning to our example,
(a) MSB is $0->$ sign bit \Rightarrow The number is positive
(b) The next 8 bits are $00001000->$ exponent $\Rightarrow 8-127=-119$ (Note that $-119+127$ is +8)
(c) The next 23 bits are 00001001001000010010110 ->mantissa

Final result is
$(-1)^{\wedge}(0) * 1$.(mantissa) * 2^{\wedge} (exponent)
$1.00001001001000010010110 * 2 \wedge(-119)$

Note every digit to the right of the point represents a negative power of 2
M antissa $=00001001001000010010110=2^{\wedge}-5+2^{\wedge}-8+2^{\wedge}-11+2^{\wedge}-16+2^{\wedge}-19+2^{\wedge}-21+2^{\wedge}-22$
$=0.0356624126434326171875$

Final result is
$(1+0.0356624126434326171875) * 2 \wedge(-119)=1.5582916 * 10(-36)$

So the representation above is for the number 1.5582916 * $10(-36)$

