CS/ECE 552, Introduction to Computer Architecture Spring 2012 Discussion Session 11

TA: Ramkumar Ravi

This document contains detailed solutions to selected problems from the final exam of spring 2006.

Hamming Code

PART A

- Hamming distance between **01101101** and **01010110**
 - ✓ 01101101 ^ 01010110 = 00111011
 - Count the number of 1s in the result above and that is the Hamming Distance (5)

PART B

- Minimum Hamming distance needed between a pair of valid code words to detect a single bit error
 - ✓ A code is capable of t error detection, iff minimum HD of the code is t+1 Hence, answer is 2

PART C

- Minimum Hamming distance needed between a pair of valid code words to correct a single bit error
 - ✓ A code is capable of t error correction, iff minimum HD of the code is 2t+1 Hence, answer is 3

PART D

- Minimum Hamming distance needed between a pair of valid code words to correct a single bit error and detect a double bit error
 - ✓ A code is capable of d error detection and t error correction, iff minimum HD of the code is t + d + 1 Hence, answer is 4

PART E

	C ₁	с ₂	b ₁	C ₃	\mathfrak{b}_2	b ₃	b ₄	C ₄
Н=	1	0	1	0	1	0	1	0
	0	1	1	0	0	1	1	0
	0	0	0	1	1	1	1	0
	1	1	1	1	1	1	1	1

C1 = checks for parity across bits b1, b2 and b4 C2 = checks for parity across bits b1, b3 and b4 C3 = checks for parity across bits b2, b3 and b4

Assuming odd parity, given data word $b_1b_2b_3b_4 = 0011$, we find the code word

- C1 checks odd parity across b1, b2 and b4. In this case check odd parity across 0, 0 and 1. There is already off number of 1's. So C1 should be 0 (if not add a 1 to make total number of 1's odd)
- C2 checks *odd parity* across b1, b3 and b4. In this case check *odd parity* across 0, 1 and 1. There is an even number of 1's. So **C2 should be 1** (add a 1 to make total number of 1's odd)
- C3 checks *odd parity* across b2, b3 and b4. In this case check *odd parity* across 0, 1 and 1. There is an even number of 1's. So **C3 should be 1** (add a 1 to make total number of 1's odd)
- C4 checks for parity across entire combination C1C2b1C3b2b3b4 = 0101011 There is an even number of 1's. So C4 should be 1 (add a 1 to make total number of 1's odd)

So code word is $C_1C_2b_1C_3b_2b_3b_4C_4 = 01010111$

PART F

- Word read from memory is $C_1C_2b_1C_3b_2b_3b_4C_4 = 0101 0101$
- Data word is $b_1b_2b_3b_4 = 0010$
- Check bits are $C_1C_2C_3 = 011$

From the table above, calculate the original check bits for the data word 0010

- C1 = check across 0, 0 and 0; So C1 = 1
- C2 = check across 0, 1 and 0; So C2 = 0
- C3 = check across 0, 1 and 0; So C3 = 0

Now Syndrome =original check bits **XOR** given check bits = $001 \land 110 = 111$ Hence bit 7 is in error

PART G

- Procedure for detecting a double error
 - ✓ Parity is OK and Syndrome is non-zero

PART H

- In the code word **0101 0101**, the parity indicated by the LSB (C₄) is *NOT OK*. With odd parity, this bit should have been a 0
- We already observed in Part F that syndrome is *non-zero* (111)
- Hence, a parity *NOT OK* and syndrome *NON-ZERO* indicates that there is a 1-bit error in the position indicated by the syndrome

BOOTH ENCODING

Current Bit	Bit to right	Encoding
0	0	0
0	1	1
1	0	-1
1	1	0

Note that the table above (for 1-bit Booth encoding) follows the same format as the truth table of XOR gate (for inputs 1, 0 use -1)

PART A

- Obtain Booth encoding for (-47)₁₀
- STEP 1: Obtain binary representation for -47 = 1101 0001

```
Using table, obtain 1-bit encoding starting from LSB
Current bit – LSB = 1
Bit to right – Always assume bit to right of LSB is 0
So combination is 10 -> Encoding is -1
```

```
Move left
Current bit = 0
Bit to right = 1
So combination is 01 -> Encoding is 1
```

Move left Current bit = 0 Bit to right = 0 So combination is **00 -> Encoding is 0**

```
Move left
Current bit = 0
Bit to right = 0
So combination is 00 -> Encoding is 0
```

```
Move left
Current bit = 1
Bit to right = 0
So combination is 00 -> Encoding is -1
```

```
Move left
Current bit = 0
Bit to right = 1
So combination is 01 -> Encoding is 1
```

```
Move left
Current bit = 1
Bit to right = 0
```

So combination is 10 -> Encoding is -1

Move left Current bit = MSB = 1 Bit to right = 1 So combination is **11 -> Encoding is 0**

Result is 0 -1 1 -1 0 0 1 -1

PART B

- Obtain 2-bit Booth encoding by grouping the 1-bit result into pairs
- (0 -1), (1 -1), (0 0), (1 -1)
- In every pair refer to the first value as X and second value as X-1 and use the formula 2*X + X-1

$$(0 -1) = 2*0 + -1 = -1$$

(1 -1) = 2*1 + -1 = 1
(0 0) = 2*0 + 0 = 0
(1 -1) = 2*1 + -1 = 1

Result is -1101

PART C

• Given 2-bit Booth encoding 0 -2 0 2 -1 2 -1 1, find the multiplier. Use the table below

Current 2 bits (X1, X2)	Bit to right (Y1)	Math	Result
00	0	[X1 X2] = [0 0] => 0	0
		[X2 Y1] = [0 0] => 0	
		2*[X1 X2]+[X2 Y1] = 0	
00	1	[X1 X2] = [0 0] => 0	1
		[X2 Y1] = [0 1] => 1	
		2*[X1 X2]+[X2 Y1] = 1	
01	0	[X1 X2] = [0 1] => 1	1
		[X2 Y1] = [1 0] => -1	
		2*[X1 X2]+[X2 Y1] = 1	
01	1	[X1 X2] = [0 1] => 1	2
		[X2 Y1] = [1 1] => 0	
		2*[X1 X2]+[X2 Y1] = 2	
10	0	[X1 X2] = [1 0] => -1	-2
		[X2 Y1] = [0 0] => 0	
		2*[X1 X2]+[X2 Y1] = -2	
10	1	[X1 X2] = [1 0] => -1	-1
		[X2 Y1] = [0 1] => 1	
		2*[X1 X2]+[X2 Y1] = -1	
11	0	[X1 X2] = [1 1] => 0	-1
		[X2 Y1] = [1 0] => -1	
		2*[X1 X2]+[X2 Y1] = -1	
11	1	[X1 X2] = [1 1] => 0	0
		[X2 Y1] = [1 1] => 0	
		2*[X1 X2]+[X2 Y1] = 0	

Start with the LSB of the 2-bit booth encoding 1

- → Remember that the bit to the right of the LSB of the multiplier is always 0
- → So with bit to right 0, what 2 current bits will give us encoding 1?
- → From table, combination is 010
- → This means 1 represents 01 in multiplier

Now, we have found the 2 LSBs of the multiplier 01

- → The next two bits left to 01 has to be found
- → So with bit to right as 0, what combination of current 2 bits will give us encoding -1?
- → From table combination is 110
- → This means -1 represents 11 in the multiplier

Now we have found the 4 LSBs of the multiplier 1101

- → The next two bits left to 11 has to be found
- → So with bit to right as 1, what combination of current 2 bits will give us encoding 2?
- → From table combination is 011
- → This means 2 represents 01 in the multiplier

Our multiplier now is 01 1101

- → The next two bits left to 01 has to be found
- → So with bit to right as 0, what combination of current 2 bits will give us encoding -1?
- → From table combination is 110
- → This means -1 represents 11 in the multiplier

Our multiplier now is 1101 1101

- → The next two bits left to 11 has to be found
- → So with bit to right as 1, what combination of current 2 bits will give us encoding 2?
- → From table combination is 011
- → This means 2 represents 01 in the multiplier

Our multiplier now is **01 1101 1101**

- → The next two bits left to 01 has to be found
- → So with bit to right as 0, what combination of current 2 bits will give us encoding 0?
- → From table combination is 000
- → This means 0 represents 00 in the multiplier

Our multiplier now is **0001 1101 1101**

- → The next two bits left to 00 has to be found
- → So with bit to right as 0, what combination of current 2 bits will give us encoding -2?
- → From table combination is 100
- → This means -2 represents 10 in the multiplier

Our multiplier now is **10 0001 1101 1101**

- → The next two bits left to 10 has to be found
- → So with bit to right as 1, what combination of current 2 bits will give us encoding **0**?
- → From table combination is 111
- → This means 0 represents 11 in the multiplier

Final multiplier is **1110 0001 1101 1101**