# CS/ ECE 552, Introduction to Computer Architecture Spring 2012 <br> Discussion Session 11 

TA: Ramkumar Ravi

This document contains detailed solutions to selected problems from the final exam of spring 2006.

## Hamming Code

## PART A

- Hamming distance between 01101101 and 01010110
$\checkmark 01101101$ ^ $01010110=00111011$
Count the number of $1 s$ in the result above and that is the Hamming Distance (5)
PART B
- Minimum Hamming distance needed between a pair of valid code words to detect a single bit error
$\checkmark$ A code is capable of $\mathbf{t}$ error detection, iff minimum HD of the code is $\mathbf{t}+\mathbf{1}$ Hence, answer is 2

PART C

- Minimum Hamming distance needed between a pair of valid code words to correct a single bit error
$\checkmark$ A code is capable of $\mathbf{t}$ error correction, iff minimum HD of the code is $\mathbf{2 t} \boldsymbol{t} \mathbf{1}$ Hence, answer is 3

PART D

- Minimum Hamming distance needed between a pair of valid code words to correct a single bit error and detect a double bit error
$\checkmark$ A code is capable of $\mathbf{d}$ error detection and $\mathbf{t}$ error correction, iff minimum HD of the code is $\mathbf{t + d}+\mathbf{1}$
Hence, answer is 4
PARTE

|  | $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{~b}_{1}$ | $\mathrm{C}_{3}$ | $\mathrm{~b}_{2}$ | $\mathrm{~b}_{3}$ | $\mathrm{~b}_{4}$ | $\mathrm{C}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}=$ | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
|  | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
|  | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |

$C 1=$ checks for parity across bits b1, b2 and b4
$C 2=$ checks for parity across bits b1, b3 and b4
C3 = checks for parity across bits b2, b3 and b4

Assuming odd parity, given data word $b_{1} b_{2} b_{3} b_{4}=0011$, we find the code word

- C1 checks odd parity across b1, b2 and b4. In this case check odd parity across 0,0 and 1 .

There is already off number of 1 's. So $\mathbf{C 1}$ should be $\mathbf{0}$ (if not add a 1 to make total number of 1's odd)

- C2 checks odd parity across b1, b3 and b4. In this case check odd parity across 0, 1 and 1 . There is an even number of 1's. So C2 should be $\mathbf{1}$ (add a 1 to make total number of 1's odd)
- C3 checks odd parity across b2, b3 and b4. In this case check odd parity across 0,1 and 1 .

There is an even number of 1's. So C3 should be $\mathbf{1}$ (add a 1 to make total number of 1's odd)

- C4 checks for parity across entire combination
$C_{1} C_{2} b_{1} C_{3} b_{2} b_{3} b_{4}=0101011$
There is an even number of 1's. So $\mathbf{C 4}$ should be $\mathbf{1}$ (add a 1 to make total number of 1's odd)
So code word is
$C_{1} C_{2} b_{1} C_{3} b_{2} b_{3} b_{4} C_{4}=01010111$


## PART F

- Word read from memory is $\mathrm{C}_{1} \mathrm{C}_{2} b_{1} C_{3} b_{2} b_{3} b_{4} C_{4}=01010101$
- Data word is $b_{1} b_{2} b_{3} b_{4}=0010$
- Check bits are $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=011$

From the table above, calculate the original check bits for the data word 0010
$\mathrm{Cl}=$ check across 0,0 and $0 ; \mathrm{So} \mathbf{C 1 = 1}$
C2 $=$ check across 0,1 and $0 ;$ So C2 = $\mathbf{0}$
C3 $=$ check across 0,1 and $0 ;$ So C3 $=\mathbf{0}$
Now Syndrome =original check bits XOR given check bits $=001$ ^110 $=111$
Hence bit 7 is in error

## PART G

- Procedure for detecting a double error
$\checkmark$ Parity is OK and Syndrome is non-zero


## PART H

- In the code word 0101 0101, the parity indicated by the LSB $\left(\mathrm{C}_{4}\right)$ is NOT OK. With odd parity, this bit should have been a 0
- We already observed in Part F that syndrome is non-zero (111)
- Hence, a parity NOT OK and syndrome NON-ZERO indicates that there is a 1-bit error in the position indicated by the syndrome


## BOOTH ENCODING

| Current Bit | Bit to right | Encoding |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | -1 |
| 1 | 1 | 0 |

Note that the table above (for 1-bit Booth encoding) follows the same format as the truth table of XOR gate (for inputs 1, 0 use -1)

## PART A

- Obtain Booth encoding for (-47) $)_{10}$
- STEP 1: Obtain binary representation for $-47=11010001$

Using table, obtain 1-bit encoding starting from LSB
Current bit - LSB =1
Bit to right - Always assume bit to right of LSB is 0
So combination is $\mathbf{1 0 - >}$ Encoding is -1
M ove left
Current bit $=0$
Bit to right =1
So combination is $\mathbf{0 1}$-> Encoding is $\mathbf{1}$
M ove left
Current bit $=0$
Bit to right $=0$
So combination is $\mathbf{0 0 - >}$ Encoding is $\mathbf{0}$
M ove left
Current bit $=0$
Bit to right $=0$
So combination is $\mathbf{0 0}$-> Encoding is $\mathbf{0}$
M ove left
Current bit =1
Bit to right $=0$
So combination is $\mathbf{0 0 - >}$ Encoding is $\mathbf{- 1}$
M ove left
Current bit $=0$
Bit to right =1
So combination is $\mathbf{0 1}$-> Encoding is $\mathbf{1}$
M ove left
Current bit =1
Bit to right $=0$

So combination is $\mathbf{1 0 - >}$ Encoding is -1
M ove left
Current bit $=\mathrm{M} \mathrm{SB}=1$
Bit to right =1
So combination is $\mathbf{1 1 - >}$ Encoding is $\mathbf{0}$

## Result is 0-11-1001-1

## PART B

- Obtain 2-bit Booth encoding by grouping the 1 -bit result into pairs
- (0-1), (1-1), (0 0), (1-1)
- In every pair refer to the first value as $X$ and second value as $X-1$ and use the formula $2 * X+X-1$

$$
\begin{aligned}
(0-1) & =2^{*} 0+-1=-1 \\
(1-1) & =2^{*} 1+-1=1 \\
(00) & =2^{*} 0+0=0 \\
(1-1) & =2 * 1+-1=1
\end{aligned}
$$

## Result is-1 101

## PART C

- Given 2-bit Booth encoding 0-202-12-11, find the multiplier. Use the table below
$\left.\begin{array}{|c|c|c|c|}\hline \text { Current 2 bits (X1, X2) } & \text { Bit to right (Y1) } & \text { Math } & \text { Result } \\ \hline 00 & 0 & {[\mathrm{X1} \mathrm{X2]=[00]} \mathrm{\Rightarrow 0}} & 0 \\ & & {[\mathrm{X} 2 \mathrm{Y} 1]=[00] \Rightarrow 0} & 2 *[\mathrm{X} 1 \mathrm{X} 2]+\mathrm{X} 2 \mathrm{Y} 1]=0\end{array}\right]$

Start with the LSB of the 2-bit booth encoding 1
$\rightarrow$ Remember that the bit to the right of the LSB of the multiplier is always 0
$\rightarrow$ So with bit to right 0 , what 2 current bits will give us encoding $\mathbf{1}$ ?
$\rightarrow$ From table, combination is 010
$\rightarrow$ This means $\mathbf{1}$ represents 01 in multiplier
Now, we have found the 2 LSBs of the multiplier 01
$\rightarrow$ The next two bits left to 01 has to be found
$\rightarrow$ So with bit to right as 0 , what combination of current 2 bits will give us encoding $\mathbf{- 1}$ ?
$\rightarrow$ From table combination is 110
$\rightarrow$ This means $\mathbf{- 1}$ represents $\mathbf{1 1}$ in the multiplier
Now we have found the 4 LSBs of the multiplier 1101
$\rightarrow$ The next two bits left to 11 has to be found
$\rightarrow$ So with bit to right as 1 , what combination of current 2 bits will give us encoding $\mathbf{2}$ ?
$\rightarrow$ From table combination is 011
$\rightarrow$ This means $\mathbf{2}$ represents 01 in the multiplier
Our multiplier now is 011101
$\rightarrow$ The next two bits left to 01 has to be found
$\rightarrow$ So with bit to right as 0 , what combination of current 2 bits will give us encoding $\mathbf{- 1}$ ?
$\rightarrow$ From table combination is 110
$\rightarrow$ This means $\mathbf{- 1}$ represents $\mathbf{1 1}$ in the multiplier
Our multiplier now is 11011101
$\rightarrow$ The next two bits left to 11 has to be found
$\rightarrow$ So with bit to right as 1 , what combination of current 2 bits will give us encoding $\mathbf{2}$ ?
$\rightarrow$ From table combination is 011
$\rightarrow$ This means $\mathbf{2}$ represents $\mathbf{0 1}$ in the multiplier
Our multiplier now is 0111011101
$\rightarrow$ The next two bits left to 01 has to be found
$\rightarrow$ So with bit to right as 0 , what combination of current 2 bits will give us encoding $\mathbf{0}$ ?
$\rightarrow$ From table combination is 000
$\rightarrow$ This means $\mathbf{0}$ represents $\mathbf{0 0}$ in the multiplier
Our multiplier now is 000111011101
$\rightarrow$ The next two bits left to 00 has to be found
$\rightarrow$ So with bit to right as 0 , what combination of current 2 bits will give us encoding $\mathbf{- 2}$ ?
$\rightarrow$ From table combination is 100
$\rightarrow$ This means $\mathbf{- 2}$ represents $\mathbf{1 0}$ in the multiplier

Our multiplier now is 10000111011101
$\rightarrow$ The next two bits left to 10 has to be found
$\rightarrow$ So with bit to right as $\mathbf{1}$, what combination of current 2 bits will give us encoding $\mathbf{0}$ ?
$\rightarrow$ From table combination is 111
$\rightarrow$ This means $\mathbf{0}$ represents $\mathbf{1 1}$ in the multiplier
Final multiplier is 1110000111011101

