
CS/ECE 552, Spring 2012

Discussion Session
10

CS/ECE 552
Ramkumar Ravi

16 Apr 2012

Mark your calendar
IMPORTANT DATES

– 04/23 – Project Demo 2 (Submission instructions would be similar to
demo1. Will be posted on course website and e-mailed)

– 05/02 – HW6 due

– 05/11 – Project Demo 3

– 05/13 – Final exam

TODAY
– HW6 discussion (Problems 1, 2 and 4. Spend some time on Problem 3)

– Demo2 requirements in brief

Problem 1 - ECC
• This problem consists of two parts:

(1) Given the dataword, find the codeword using the code-table
(2) Assuming that there can be a 1 bit error, find the dataword for a given

code-word

• Please go through the ECC handout posted in the course webpage
(Not discussing the SECDED theory today – Important for exam)
http://pages.cs.wisc.edu/~david/courses/cs552/S12/handouts/ecc1.pdf

• Important results
• Hamming distance (HD) – Number of bits that are different between two words
• A code is capable of t error detection, iff minimum HD of the code is t+1
• A code is capable of t error correction, iff minimum HD of the code is 2t+1
• A code is capable of correcting t errors and detecting d errors (d>=t), iff

minimum HD of the code is at least t+d+1

Problem 1 – ECC (contd..)

• We will discuss the procedure for obtaining the code-word for a data-word
using the table above

STEP 1: Obtain check bits from table (See location of 1’s)
c[0] = d[6] ^ d[4] ^ d[3] ^ d[1] ^ d[0]
c[1] = d[6] ^ d[5] ^ d[3] ^ d[2] ^ d[0]
c[2] = d[7] ^ d[3] ^ d[2] ^ d[1]
c[3] = d[7] ^ d[6] ^ d[5] ^ d[4]

STEP 2: Take a dataword (Showing example for 10101001)
c[0] = 0 ^ 0 ^ 1 ^ 0 ^ 1 = 0
c[1] = 0 ^ 1 ^ 1 ^ 0 ^ 1 = 1
c[2] = 1 ^ 1 ^ 0 ^ 0 = 0
c[3] = 1 ^ 0 ^ 1 ^ 0 = 0

STEP 3: Form the codeword by concatenating with data word -> Result: 0010 10101001

7 6 5 4 3 2 1 0
Check bit 1 0 1 0 1 1 0 1 1
Check bit 2 0 1 1 0 1 1 0 1
Check bit 3 1 0 0 0 1 1 1 0
Check bit 4 1 1 1 1 0 0 0 0

Problem 1 – ECC (contd..)

• We will discuss the procedure for obtaining the data-word from a code-word
using the table above and given the fact that there can be a 1 bit error

STEP 1: Obtain the check bits from the given codeword
1011 10000111 -> Check bits = 1011

STEP 2: Using the table above, calculate the check bits for the dataword 10000111
c[0] = 0 ^ 0 ^ 0 ^ 1 ^ 1 = 0
c[1] = 0 ^ 0 ^ 0 ^ 1 ^ 1 = 0
c[2] = 1 ^ 0 ^ 1 ^ 1 = 1
c[3] = 1 ^ 0 ^ 0 ^ 0 = 1

STEP 3: XOR given check bits and actual check bits -> Result = 1011 ^ 1100 = 0111 (This is called syndrome. Non-zero
syndrome indicates error. 0111 from the table above indicates there is an error in name3)

7 6 5 4 3 2 1 0
Check bit 1 0 1 0 1 1 0 1 1
Check bit 2 0 1 1 0 1 1 0 1
Check bit 3 1 0 0 0 1 1 1 0
Check bit 4 1 1 1 1 0 0 0 0

Problem 2 – Booth’s algorithm
• For this problem, understand Booth’s encoding (see the table below)

• Example: Show 1-bit booth recoding for the multiplier (-47)10
STEP 1: Convert to binary -> 1101 0001
STEP 2: Group in pairs starting from LSB (Assume to the right of LSB there is a 0) -> Answer is (0 -1 1 -1 0 0 1 -1)

i i - 1 Recoded bit

0 0 0

0 1 1

1 0 -1

1 1 0

Current bit Bit to right 1-bit coding

1 0 -1

0 1 1

0 0 0

0 0 0

1 0 -1

0 1 1

1 0 -1

1 1 0

Problem 2 – Booth’s algorithm
(contd..)

• From previous answer, we can obtain the 2-bit Booth’s encoding easily (It is possible to
obtain the 2-bit encoding directly -> discuss later).
STEP 1: 1-bit Booth’s encoding was (0 -1 1 -1 0 0 1 -1)
STEP 2: Group in pairs and use the formula shown below -> Answer is [-1 1 0 1]

• In the problem given in HW6, multiplier is 0101 0101.
Here is a step by-step description of what you need to do

STEP 1: Obtain 2-bit Booth encoding for the multiplier [Follow procedure explained] -> Result is [1, 1, 1, 1] (Note: In
your assignment, you will have to show how you got the encoding. If not, NO CREDIT will be given)

STEP 2: Actual Multiplication (sign extend the multiplicand first and multiply with 2-bit booth encoding to get partial
products)

(a) 1111 1111 1100 0101 * 1 = 1111 1111 1100 0101 (PP1)
(b) Shift the multiplicand left by 2 and repeat

1111 1111 0001 0100 * 1 = ? (PP2)
(c) Shift left (b) again by 2 and repeat

1111 1100 0101 0000 * 1 = ? (PP3)
(d) Shift left (c) again by 2 and repeat

1111 XXXX YYYY ZZZZ * 1 = ? (PP4)
STEP 3: Add all partial products obtained above (PP1 + PP2 + PP3 + PP4) to obtain final result. The expected result

is (-5015)10

Pair (i+1, i) [2*(i+1) + i] 2-bit Booth

[1, -1] 2*1 + (-1) 1

[0, 0] 2*0 + 0 0

[1, -1] 2*1 + (-1) 1

[0, -1] 2*0 + (-1) -1

Problem 4 - Coherence
• Understanding a 3-state write-invalidate cache coherence protocol (M, S and I states)

• Initially, all processors are in the Invalid state (as shown below) [Memory block at
address 100 contains only one word]

• Processor P0 executes lw $1, 100($0)
Action: Because the block is in I state in its cache, P0 misses and reads the block from

memory (Let us show this in the table)

Problem 4 – MSI state diagram

INVALID means the cache line is either
not present or is in invalid state.

If the cache line is clean and is shared
by more than one processor, it is marked
as SHARED.

If a cache line is dirty and the processor
has exclusive ownership of it, it is in the
MODIFIED state.

BusRdX causes other processors to
invalidate (demote) its cache block to the
INVALID state

• P0 accessed data from memory and moves to S state (indicating it shares the data
with memory). The other 2 processors still do not have valid copies of the block

• Now P1 executes addi $1, $0, 13 and sw $1, 100 ($0). Let us see the contents of the
table now (The key point to note is that only 1 processor can have the block in M
state)

• Now P2 executes lw $1, 100 ($0). Note that P1 has the most valid copy of the block.
So it will supply the data and update the memory as well

Problem 4 – Coherence (contd..)

P0 P1 P2 Memory

State Data State Data State Data Data

S 7 I 0 I 0 7

P0 P1 P2 Memory

State Data State Data State Data Data

I 7 M 13 I 0 7

P0 P1 P2 Memory

State Data State Data State Data Data

I 7 S 13 ? ? ?

