
CS/ECE 552, Spring 2012

Discussion Session
10

CS/ECE 552
Ramkumar Ravi

16 Apr 2012

Mark your calendar
IMPORTANT DATES

– 04/23 – Project Demo 2 (Submission instructions would be similar to
demo1. Will be posted on course website and e-mailed)

– 05/02 – HW6 due

– 05/11 – Project Demo 3

– 05/13 – Final exam

TODAY
– HW6 discussion (Problems 1, 2 and 4. Spend some time on Problem 3)

– Demo2 requirements in brief

Problem 1 - ECC
• This problem consists of two parts:

(1) Given the dataword, find the codeword using the code-table
(2) Assuming that there can be a 1 bit error, find the dataword for a given

code-word

• Please go through the ECC handout posted in the course webpage
(Not discussing the SECDED theory today – Important for exam)
http://pages.cs.wisc.edu/~david/courses/cs552/S12/handouts/ecc1.pdf

• Important results
• Hamming distance (HD) – Number of bits that are different between two words
• A code is capable of t error detection, iff minimum HD of the code is t+1
• A code is capable of t error correction, iff minimum HD of the code is 2t+1
• A code is capable of correcting t errors and detecting d errors (d>=t), iff

minimum HD of the code is at least t+d+1

Problem 1 – ECC (contd..)

• We will discuss the procedure for obtaining the code-word for a data-word
using the table above

STEP 1: Obtain check bits from table (See location of 1’s)
c[0] = d[6] ^ d[4] ^ d[3] ^ d[1] ^ d[0]
c[1] = d[6] ^ d[5] ^ d[3] ^ d[2] ^ d[0]
c[2] = d[7] ^ d[3] ^ d[2] ^ d[1]
c[3] = d[7] ^ d[6] ^ d[5] ^ d[4]

STEP 2: Take a dataword (Showing example for 10101001)
c[0] = 0 ^ 0 ^ 1 ^ 0 ^ 1 = 0
c[1] = 0 ^ 1 ^ 1 ^ 0 ^ 1 = 1
c[2] = 1 ^ 1 ^ 0 ^ 0 = 0
c[3] = 1 ^ 0 ^ 1 ^ 0 = 0

STEP 3: Form the codeword by concatenating with data word -> Result: 0010 10101001

7 6 5 4 3 2 1 0
Check bit 1 0 1 0 1 1 0 1 1
Check bit 2 0 1 1 0 1 1 0 1
Check bit 3 1 0 0 0 1 1 1 0
Check bit 4 1 1 1 1 0 0 0 0

Problem 1 – ECC (contd..)

• We will discuss the procedure for obtaining the data-word from a code-word
using the table above and given the fact that there can be a 1 bit error

STEP 1: Obtain the check bits from the given codeword
1011 10000111 -> Check bits = 1011

STEP 2: Using the table above, calculate the check bits for the dataword 10000111
c[0] = 0 ^ 0 ^ 0 ^ 1 ^ 1 = 0
c[1] = 0 ^ 0 ^ 0 ^ 1 ^ 1 = 0
c[2] = 1 ^ 0 ^ 1 ^ 1 = 1
c[3] = 1 ^ 0 ^ 0 ^ 0 = 1

STEP 3: XOR given check bits and actual check bits -> Result = 1011 ^ 1100 = 0111 (This is called syndrome. Non-zero
syndrome indicates error. 0111 from the table above indicates there is an error in name3)

7 6 5 4 3 2 1 0
Check bit 1 0 1 0 1 1 0 1 1
Check bit 2 0 1 1 0 1 1 0 1
Check bit 3 1 0 0 0 1 1 1 0
Check bit 4 1 1 1 1 0 0 0 0

Problem 2 – Booth’s algorithm
• For this problem, understand Booth’s encoding (see the table below)

• Example: Show 1-bit booth recoding for the multiplier (-47)10
STEP 1: Convert to binary -> 1101 0001
STEP 2: Group in pairs starting from LSB (Assume to the right of LSB there is a 0) -> Answer is (0 -1 1 -1 0 0 1 -1)

i i - 1 Recoded bit

0 0 0

0 1 1

1 0 -1

1 1 0

Current bit Bit to right 1-bit coding

1 0 -1

0 1 1

0 0 0

0 0 0

1 0 -1

0 1 1

1 0 -1

1 1 0

Problem 2 – Booth’s algorithm
(contd..)

• From previous answer, we can obtain the 2-bit Booth’s encoding easily (It is possible to
obtain the 2-bit encoding directly -> discuss later).
STEP 1: 1-bit Booth’s encoding was (0 -1 1 -1 0 0 1 -1)
STEP 2: Group in pairs and use the formula shown below -> Answer is [-1 1 0 1]

• In the problem given in HW6, multiplier is 0101 0101.
Here is a step by-step description of what you need to do

STEP 1: Obtain 2-bit Booth encoding for the multiplier [Follow procedure explained] -> Result is [1, 1, 1, 1] (Note: In
your assignment, you will have to show how you got the encoding. If not, NO CREDIT will be given)

STEP 2: Actual Multiplication (sign extend the multiplicand first and multiply with 2-bit booth encoding to get partial
products)

(a) 1111 1111 1100 0101 * 1 = 1111 1111 1100 0101 (PP1)
(b) Shift the multiplicand left by 2 and repeat

1111 1111 0001 0100 * 1 = ? (PP2)
(c) Shift left (b) again by 2 and repeat

1111 1100 0101 0000 * 1 = ? (PP3)
(d) Shift left (c) again by 2 and repeat

1111 XXXX YYYY ZZZZ * 1 = ? (PP4)
STEP 3: Add all partial products obtained above (PP1 + PP2 + PP3 + PP4) to obtain final result. The expected result

is (-5015)10

Pair (i+1, i) [2*(i+1) + i] 2-bit Booth

[1, -1] 2*1 + (-1) 1

[0, 0] 2*0 + 0 0

[1, -1] 2*1 + (-1) 1

[0, -1] 2*0 + (-1) -1

Problem 4 - Coherence
• Understanding a 3-state write-invalidate cache coherence protocol (M, S and I states)

• Initially, all processors are in the Invalid state (as shown below) [Memory block at
address 100 contains only one word]

• Processor P0 executes lw $1, 100($0)
Action: Because the block is in I state in its cache, P0 misses and reads the block from

memory (Let us show this in the table)

Problem 4 – MSI state diagram

INVALID means the cache line is either
not present or is in invalid state.

If the cache line is clean and is shared
by more than one processor, it is marked
as SHARED.

If a cache line is dirty and the processor
has exclusive ownership of it, it is in the
MODIFIED state.

BusRdX causes other processors to
invalidate (demote) its cache block to the
INVALID state

• P0 accessed data from memory and moves to S state (indicating it shares the data
with memory). The other 2 processors still do not have valid copies of the block

• Now P1 executes addi $1, $0, 13 and sw $1, 100 ($0). Let us see the contents of the
table now (The key point to note is that only 1 processor can have the block in M
state)

• Now P2 executes lw $1, 100 ($0). Note that P1 has the most valid copy of the block.
So it will supply the data and update the memory as well

Problem 4 – Coherence (contd..)

P0 P1 P2 Memory

State Data State Data State Data Data

S 7 I 0 I 0 7

P0 P1 P2 Memory

State Data State Data State Data Data

I 7 M 13 I 0 7

P0 P1 P2 Memory

State Data State Data State Data Data

I 7 S 13 ? ? ?

