
CS/ECE 552, Spring 2012

Discussion Session 3

CS/ECE 552

Ramkumar Ravi
13 Feb 2012

GENERAL HW DELIVERABLES

• ELECTRONIC
– All verilog files including testbench
– Vcheck.out files
– Anything else that is mentioned in the assignment

• MANUAL
– Annotated waveforms
– Schematic of the design
– Anything else that is mentioned in the assignment

Problem 1 – Barrel shifter

• Barrel shifters are often utilized by embedded digital signal processors and
general-purpose processors to manipulate data

• In this table, the bit vector for A is denoted as a7a6a5a4a3a2a1a0 and the
shift/rotate amount is 3 bits. As illustrated in this table

Operation Y

3-bit shift right logical 0 0 0 a7 a6 a5 a4 a3

3-bit shift right arithmetic a7 a7 a7 a7 a6 a5 a4 a3

3-bit rotate right a2 a1 a0 a7 a6 a5 a4 a3

3-bit shift left logical a4 a3 a2 a1 a0 0 0 0

3-bit shift left arithmetic a7a3 a2 a1 a0 0 0 0

3-bit rotate left a4 a3 a2 a1 a0 a7 a6 a5

8-bit Right Rotate example implementation

Points to note

• EXPLORE – Design can be simplified by using a combination of 2:1 MUX
and the 4:1 MUX you designed in the last HW (<= 50 lines of code)

• Hint: What do you think about this code below ?
wire [15:0] S0;

wire [15:0] L0;

// level 1

mux2_1 inst [13:0] (.InA(In[13:0]), .InB(In[15:2]), .Out(lev0[14:1]), .S(Op[1]));

mux4_1 inst1 (.out(lev0[0]), .InA(In[15]), .InB(1’d0), .InC(In[1]), .InD(In[1]), .S(Op));

mux4_1 inst2 (.out(lev0[15]), .InA(In[14]), .InB(In[14]), .InC(In[0]), .InD(In[15]), .S(Op));

mux2_1 inst [15:0] (.InA(In), .InB(L0), .S(cnt[0]), .out(out));

/levels 2, 4 and 8

??

From previous slide – All 1 bit operations

• For rotate left (Op = 00)
– lev0 [14:1] = In [13:0]
– lev0 [0] = In [15]
– lev0 [15] = In [14]

• For shift left (Op = 01)
– lev0 [14:1] = In [13:0]
– lev0 [0] = 0
– lev0 [15] = In [14]

• For rotate right (Op = 10)
– lev0 [14:1] = In [15:2]
– lev0 [0] = In [1]
– lev0 [15] = In [0]

• For shift right arithmetic (Op = 11)
– lev0 [14:1] = In [15:2]
– lev0 [0] = In [1]
– lev0 [15] = In [15]

WHAT TO SUBMIT

• ELECTRONIC
– Verilog code of all modules and testbench

• MANUAL
– Neat Schematic of the design (hand-drawn is fine)

– Annotated waveforms

– Explain why you chose a set of inputs for your simulation (in 3 or 4 sentences)

Problem 2 - ALU

• Carry look ahead adder example (works on carry-generate and carry-
propogate)

2’s complement representation

• Represent positive 2’s complement numbers as simple binary

• Represent negative 2’s complement as a binary that when added to a
positive number of same magnitude equals 0

Signed Unsigned 2’s complement

3 3 0000 0011

2 2 0000 0010

1 1 0000 0001

0 0 0000 0000

-1 255 1111 1111

-2 254 1111 1110

-3 253 1111 1101

2’s complement examples

• Addition
5 + (-3) SIGN EXTENSION

0000 0101 = +5 Signed -1 in 16-bits is 1111 1111 1111 1111

+ 1111 1101 = -3 Signed +1 in 16-bits is 0000 0000 0000 0001

0000 0010 = +2

• Subtraction
7 – 12 = 7 + (-12)

0000 0111 = +7

+ 1111 0100 = -12

1111 1011 = -5

Other things to note

• Use shifter designed in problem 1

• Shift amount is represented by lower 4 bits of input B

Input to be shifted is A
a1 = invA ? (~InA) : InA;

b1 = invB ? (~InB) : InB;

• Take care of OFL -> Keep track of sign bit and ‘cout’ bit

• Underflow is don’t care

WHAT TO SUBMIT

• ELECTRONIC
– Verilog code of all modules and testbench

• MANUAL
– Neat Schematic of the design (hand-drawn is fine)

– Annotated waveforms

– Explain why you chose a set of inputs for your simulation (in 3 or 4 sentences)

Problem 3 and 4

• Translate to MIPS

• For problem 4, after translating to MIPS, you might have a structure
similar to this:

XXX
YYY
Loop: PPP

QQQ
RRR

Total = 2 + 3*(number of times loop is executed)

• Memory references for problem 4?? -> Think

Problem 5

• Total number of instructions is given

• Also mentioned is the % distribution of each instruction along with the
number of cycles an instruction takes to execute
– Overall CPI = (40*2 + .. + .. + ..) / total

– Old number of multiplies = 8% of 200 = x

– 50% of the old number is replaced by shift-add that takes 3.5 cycles each

– New number of multiplies = x * 50% = y

– Additional ALU instructions = x * 50% * (length)

– Calculate new total number of instructions and the new CPI

Problem 6

• Find the maximum IPC
– IPS = IPC * clock speed

• Average CPI
= (2A+B+C+D+E)/(2+1+1+1+1)

Find results for both P1 and P2

Speedup (P2) / Speedup (P1) = Avg. time per instruction on P1 / Avg. time per instruction on
P2

For P1, average CPI / 4GHz and for P2, average CPI / 6GHz

• Find out that frequency where ratio above is 1

Problem 7

• CPI = (CPU time × clock rate)/No. instr.
CPU time and clock rate is given

Number of instructions = 0.85 * (Data in problem 1.12)

• Clock rate ratio = New clock / old clock
(CPI)4 GHz / (CPI)X GHz for a and b

Why do you think they are dissimilar ? CPU time ?

• New execution time / old execution time
CPU time reduction = [1 – (New exec time / old exec time)] * 100 = ?? %

