
CS/ECE 552, Spring 2012

Discussion Session 4

CS/ECE 552

Ramkumar Ravi
20 Feb 2012

IMPORTANT

• HW2 is due on 02/22
– Electronic submissions due by 12:30 PM (02/22)
– Manual copies due in class (02/22)

• HW2 clearly specifies what needs to be submitted electronically and what needs to be
handed manually -> PLEASE FOLLOW

– Ensure your top level modules are named as per specifications (not just filenames)
– Points might be deducted from this HW onwards

• Why so many RULES !!!
– This is how industry works as well -> You are required to follow conventions
– Paves way for uniformity; more efficient and reliable grading
– Better marks

• What happens on a late submission ?
– Professor Wood will take the final call on this

Problem 1 – Barrel shifter

• Barrel shifters are often utilized by embedded digital signal processors and
general-purpose processors to manipulate data

• In this table, the bit vector for A is denoted as a7a6a5a4a3a2a1a0 and the
shift/rotate amount is 3 bits. As illustrated in this table

Operation Y

3-bit shift right logical 0 0 0 a7 a6 a5 a4 a3

3-bit shift right arithmetic a7 a7 a7 a7 a6 a5 a4 a3

3-bit rotate right a2 a1 a0 a7 a6 a5 a4 a3

3-bit shift left logical a4 a3 a2 a1 a0 0 0 0

3-bit shift left arithmetic a7a3 a2 a1 a0 0 0 0

3-bit rotate left a4 a3 a2 a1 a0 a7 a6 a5

8-bit Right Rotate example implementation

Points to note

• EXPLORE – Design can be simplified by using a combination of 2:1 MUX
and the 4:1 MUX you designed in the last HW (<= 50 lines of code)

• Hint: What do you think about this code below ?
wire [15:0] S0;

wire [15:0] L0;

// level 1

mux2_1 inst [13:0] (.InA(In[13:0]), .InB(In[15:2]), .Out(lev0[14:1]), .S(Op[1]));

mux4_1 inst1 (.out(lev0[0]), .InA(In[15]), .InB(1’d0), .InC(In[1]), .InD(In[1]), .S(Op));

mux4_1 inst2 (.out(lev0[15]), .InA(In[14]), .InB(In[14]), .InC(In[0]), .InD(In[15]), .S(Op));

mux2_1 inst [15:0] (.InA(In), .InB(L0), .S(cnt[0]), .out(out));

/levels 2, 4 and 8

??

From previous slide – All 1 bit operations

• For rotate left (Op = 00)
– lev0 [14:1] = In [13:0]
– lev0 [0] = In [15]
– lev0 [15] = In [14]

• For shift left (Op = 01)
– lev0 [14:1] = In [13:0]
– lev0 [0] = 0
– lev0 [15] = In [14]

• For rotate right (Op = 10)
– lev0 [14:1] = In [15:2]
– lev0 [0] = In [1]
– lev0 [15] = In [0]

• For shift right arithmetic (Op = 11)
– lev0 [14:1] = In [15:2]
– lev0 [0] = In [1]
– lev0 [15] = In [15]

Start with a 1-bit Adder

Design CLA logic and build 4-bit CLA

CLA Logic

• C1 = G0 + P0.C0
• C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0
• C3 = G2 + P2.C2 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0
• C4 = G3 + P3.C3 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 +

P3.P2.P1.P0.C0

• Ggroup = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0
• Pgroup = P3.P2.P1.P0

• C4 = Ggroup + (Pgroup.C0)
• Cout = C4

Extend to 16-bit CLA

Other things to note

• Use shifter designed in problem 1

• Shift amount is represented by lower 4 bits of input B

Input to be shifted is A
a1 = invA ? (~InA) : InA;

b1 = invB ? (~InB) : InB;

• Take care of OFL -> Keep track of sign bit and ‘cout’ bit

OVERFLOW
• Overflow will occur for both signed and unsigned arithmetic

– For unsigned arithmetic, OFL can be detected just by using Cout
Sign == 1’b0 and Cout == 1’b1

– For signed arithmetic however, you will have to check for the following cases:
• the sum of two positive numbers is negative;
• the sum of two negative numbers is non-negative;
• subtracting a positive number from a negative one yields a positive result; or
• subtracting a negative number from a non-negative one yields a negative result.

• Example consider you are adding +17 and +19 in signed arithmetic
and they are represented by 6 bits

010001 + 010011 = 100100 -> However this is interpreted as -28 and not +36 as desired; overflow !!
101111 + 101101 = 011100 -> However this is interpreted as +28 and not -36 as desired; overflow

• Check sign of the sum and compare it against the
signs of the numbers added. Obviously, two positive numbers added
together should give a positive result,
and two negative numbers added together should give
a negative result.

Problem 3 and 4

• Example problem

for (i=0; i<a; i++)

{

a += b;

}

Assume a, b and i are in $s0, $s1 and $to respectively

addi $t0, $0, 0 #$t0 = 0; i=0

beq $0, $0, TEST # branch to TEST

LOOP: add $s0, $s0, $s1 # a=a+b

addi $t0, $t0, 1 # i=i+1

TEST: slti $t2, $t0, 10 # $t2 = 1 if $t0 < 10

bne $t2, $0, LOOP # if $t2 not equal to $0, go to LOOP

POINTS TO NOTE

• However in the problem , you will have to work with arrays
– If a[i] is in location 0, a[i+1] will be in location 4 and so on

• Problem 3 is relatively simple
– Load operands into registers
– Perform operations
– Store results into memory

Problem 5

• Total number of instructions is given

• Also mentioned is the % distribution of each instruction along with the
number of cycles an instruction takes to execute
– Overall CPI = (40*2 + .. + .. + ..) / total

– Old number of multiplies = 8% of 200 = 16

– 50% of the old number is replaced by shift-add that takes 3.5 cycles each

– New number of multiplies = 16* 50% = 8

– Additional ALU instructions = 16* 50% * 3.5 = X

– Total number of instructions = 200 -16 +8 + X = Y

– Calculate new total number of instructions and the new CPI

Problem 6

• Find the maximum IPC
– IPS = IPC * clock speed
– Ideal instruction sequence for P1 is once that is composed of instructions entirely from

Class A -> because it takes the least amount of cycles to execute
– Peak performance of P1 = 4GHz * IPC = XX MIPS
– Similarly find for P2

• Average CPI
= (2A+B+C+D+E)/(2+1+1+1+1)

Find results for both P1 and P2
Speedup (P2) / Speedup (P1) = Avg. time per instruction on P1 / Avg. time per instruction on

P2
For P1, average CPI / 4GHz and for P2, average CPI / 6GHz

• Find out that frequency where ratio above is 1

Problem 7

• CPI = (CPU time × clock rate)/No. instr.
– (700 * 4 * 10^9) / (0.85 * old instr count)

• Clock rate ratio = New clock / old clock
(CPI)4 GHz / (CPI)3 GHz for a and b

Why do you think they are similar or dissimilar ?

• New execution time / old execution time
CPU time reduction = [1 – (New exec time / old exec time)] * 100 = ?? %

