
CS/ECE 552, Spring 2012

Discussion Session 5

CS/ECE 552

Ramkumar Ravi
27 Feb 2012

Introduction

• Rules for HW will be up shortly (similar to previous homeworks) -> Please
follow instructions
– HW3 is due on 03/07

• In today’s section, we will cover all questions except Problem 2 and FIFO
design (spend some time on these questions and we will discuss next
week)

• WARNING: Codes here are for demonstration purposes only; Not tested
and might have bugs as well

Problem 1
• Expect just 3-4 lines of your opinion for each instruction

– As an example, consider the “Bit Equal” instruction

– This instruction does a bit-for-bit compare between two registers. For each bit i, if bit i
of $rs is equal to bit i of $rt, set bit i of $rd; otherwise set bit i of $rd to zero.

– Bit equal is hence equivalent to an XNOR instruction. So to incorporate the XNOR
instruction in your data path, what changes/modifications will you need to make ? (4
lines)

– Split register: Changes to Register file ??

Problem 3 - Register file design

1. din_writeData [15:0]  writedata [15:0]
2. RegWrite  write
3. WriteReg [3..0]  writeregsel [2:0]
4. ReadReg2[3..0]  read2regsel [2:0]
5. ReadReg1 [3..0]  read1regsel [2:0]
6. CLK  clk
7. Reset_n  rst
8. ReadData1 [15..0]  read1data [15:0]
9. ReadData2 [15:0]  read2data [15:0]

Representative Diagram
(16x16 register file)

Register File Interface

parameter WIDTH = 16;

input clk, rst;

input [2:0] read1regsel;

input [2:0] read2regsel;

input [2:0] writeregsel;

input [WIDTH-1:0] writedata;

input write;

output [WIDTH-1:0] read1data;

output [WIDTH-1:0] read2data;

output err;

Register File design
• Lets start with a 3-8 Decoder

• If X0X1X2 = 3’b000; select z0 and so on..
wire [7:0] we, awe;
decode3_8 decoder (.sel(writeregsel), .Out(we));

and2 inst[7:0] (.in1(we), .in2({8{write}}), .out(awe));

Example: if Sel is 3’b010; we[2] is 1’b1 and hence awe[2] is 1’b1

Register file – The registers

wire [WIDTH-1:0] q0, q1, q2, q3, q4, q5, q6, q7;

register regs7 (.q(q7), .d(writedata), .clk(clk), .rst(rst), .we(awe[7]));

register regs6 (.q(q6), .d(writedata), .clk(clk), .rst(rst), .we(awe[6]));

and so on..

Now what is the register module ? (trying to do something like figure below)

REGISTER module

module register (input [15:0] d, input clk, rst, we, output [15:0] q);

wire [15:0] e_In;

mux2_1 mux[15:0] (.InA (q), .InB(d), .S({16{we}}), .Out(e_In));

dff inst[15:0] (.q(q), .d(e_In), .clk({16{clk}}), .rst({16{rst}}));

2:1 MUX -> If S is 1’b1; InB is selected else InA is selected

16 copies of the DFF module

NOTE:

You might also need a 8:1 MUX for
giving the READ output (not included)

Problem 4 - Saturating Counter

module sc(clk, rst, ctr_rst, out, err);
input clk;
input rst;
input ctr_rst;
output [2:0] out;
output err;

endmodule

• rst: Synchronous reset that sets output to zero at pos clock edge
• ctr_rst: ctr_rst is different from the global rst signal

• The ctr_rst line is active high, i.e. a logical value of 1 will reset the counter,
while a logical value of 0 will let the counter increment.

• If ctr_rst is high while the counter is still counting, the output should reset to 0.
If ctr_rst is held high in consecutive clock cycles, the counter should hold at 0.

Code Example – One Possible
implementation

reg [2:0] nextState;
dff inst [2:0](out, nextState, clk, rst); /* Out maps to q; nextState maps to d */

always@(out, ctr_rst)
begin

case(out) // Every time out changes, keep evaluating by reading ctr_rst
// If ctr_rst is 0; keep incrementing; if not nextState is 0
// Observe that nextState is feeding the D Flip-Flop

3'd0: begin
nextState=ctr_rst? 3'd0:3'd1;
err=1'd0;

end
3'd1: begin

nextState=ctr_rst? 3'd0:3'd2;
err=1'd0;

end
… … … ???

Do not forget to include a DEFAULT state if you chose to implement this way
You can approach this problem in the traditional Boolean reduction method as well (Draw state machine;

encode truth table; get equations; use basic gates). Next slide contains some sample outputs

Counter – Sample Output

• Shown at the right are the
values of ctr_rst and out for
a sample simulation run

1. Out is initially X (cycle 0)
2. Out is 0 on posedge (rst=1). By

definition, rst will be held HIGH
in first 2 cycles (Cycle 100)

3. Out is 0 (rst=1) (Cycle 200)
4. Out is being incremented from

0->1->2 (see cycles 300,400 and
500). At 500, ctr_rst is 1

5. So, Out=0 on next posedge (cycle 600)
6. Again, Out is being incrmented

from 0->1->2 (cycles 600, 700 &
800). At 800, ctr_rst is 1

7. So, Out=0 on next posedge (cycle 900)

Sample Output - Continued

1. Out is being continuously incremented
now from 0->1->2->3->4->5 (see cycles
2000,2100,2200,2300,2400,2500)

2. From 2600 onwards, Out retains the
final value of 5 (see cycles 2600, 2700
and 2800)

3. At cycle 2800, ctr_rst goes HIGH

4. At the next clock, Out is reset to ZERO

Sample Output – Special Case (Hold Out at
Zero)

1. Over cycles 1000, 1100 and 1200, Counter
is incrementing

2. At 1200, it saw ctr_rst is 1. So in the next
cycle (cycle 1300), Out is ZERO

3. At 1300, ctr_rst is still1. So in next cycle
(cycle 1400), Out is still ZERO

4. At 1400, ctr_rst is still 1. So in next cycle
(cycle 1500), Out is still ZERO

5. At 1500, ctr_rst is 0 due to which counter
resumes counting (You can see that it
incremented from 0 to 1 in cycle 1600)

