Discussion Session 5

CS/ECE 552
Ramkumar Ravi

27 Feb 2012

CS/ECE 552, Spring 2012

Introduction

Rules for HW will be up shortly (similar to previous homeworks) -> Please
follow instructions
— HWS3is due on 03/07

In today’s section, we will cover all questions except Problem 2 and FIFO
design (spend some time on these questions and we will discuss next
week)

WARNING: Codes here are for demonstration purposes only; Not tested
and might have bugs as well

Problem 1

e Expect just 3-4 lines of your opinion for each instruction

— As an example, consider the “Bit Equal” instruction

— This instruction does a bit-for-bit compare between two registers. For each bit i, if bit |

of $rs is equal to bit i of $rt, set bit i of $rd; otherwise set bit i of $rd to zero.
Exclusive-WOR gaite

In putaj

Ourpuat

~|~|o|o]»

- 0|=|Q
= Q0|0

Equivalent gate circuit
) > cuput
— Bitequal is hence equivalent to an XNOR instruction. So to incorporate the XNOR
instruction in your data path, what changes/modifications will you need to make ? (4
lines)
— Split register: Changes to Register file ??

©COoONOORA~EWDNE

Problem 3 - Register file design

| ECES52 _Assignment_modules

;—I'din_wr'rteData[“IE..El] FeadDatal[15..0] t
—| Regiirite ReadData2[15..0] :
: WirteReg[3. 0]
== ReadReqZ[3..0]
=t ReadReqg1[3..0]
—{ CLK

'— reset_n

..

din_writeData [15:0] = writedata [15:0]
RegWrite =» write

WriteReg [3..0] = writeregsel [2:0]
ReadReg2[3..0] =» read2regsel [2:0]
ReadRegl [3..0] =» readlregsel [2:0]
CLK =» clk Representative Diagram
Reset_n =» rst (16x16 register file)
ReadDatal [15..0] =» readldata [15:0]

ReadData2 [15:0] =» read2data [15:0]

Register File Interface

parameter WIDTH = 16;

input clk, rst;

iInput [2:0] readlregsel,

iInput [2:0] read2regsel,

iInput [2:0] writeregsel;

Input [WIDTH-1:0] writedata,
input write;

output [WIDTH-1:0] readl1data;
output [WIDTH-1:0] read2data;
output err;

Register File design

e Lets start with a 3-8 Decoder

o [f XOX1X2 = 3’b000; select z0 and so on..
wire [7:0] we, awe;
decode3 8 decoder (.sel(writeregsel), .Out(we));
and? inst[7:0] (.in1(we), .In2({8{write}}), .out(awe));

Example: if Sel is 3’b010; we[2] is 1’b1 and hence awe[2] is 1’b1

H H H H H H H KN
I O N -

Register file — The registers

wire [WIDTH-1:0] g0, g1, 92, 93, g4, 95, g6, q7;

register regs7 (.q(q7), .d(writedata), .clk(clk), .rst(rst), .we(awe[7]));

register regs6 (.q(g6), .d(writedata), .clk(clk), .rst(rst), .we(awe[6]));
and so on..

Now what is the register module ? (trying to do something like figure below)

MUX D Flip Flop
> Data On
Data In i‘sy e S
Write Data C}'}.\K

Clock (l)

REGISTER module

module register (input [15:0] d, input clk, rst, we, output [15:0] g);
wire [15:0] e_In;

mux2_1 mux[15:0] (.InA (q), .InB(d), .S({16{we}}), .Out(e_In));

dff inst[15:0] (.q(q), .d(e_In), .clk({16{clk}}), .rst({16{rst}}));

2:1 MUX ->1f Sis 1'b1:; InB is selected else InA is selected

16 copies of the DFF module

NOTE: e_n

You might also need a 8:1 MUX for
giving the READ output (not included)

Problem 4 - Saturating Counter

module sc(clk, rst, ctr_rst, out, err);
iInput clk;
Input rst;
Input ctr_rst;
output [2:0] out;
output err;
endmodule

» rst: Synchronous reset that sets output to zero at pos clock edge
o ctr_rst: ctr_rstis different from the global rst signal

 The ctr_rst line is active high, i.e. a logical value of 1 will reset the counter,
while aTogical value of 0 will let the counter increment.

o If ctr_rstis high while the counter is still counting, the output should reset to O.
If ctr_rst is held high in consecutive clock cycles, the counter should hold at 0.

Code Example — One Possible
Implementation

reg [2:0] nextState;
dff inst [2:0](out, nextState, clk, rst); /* Out maps to q; nextState maps to d */

always@(out, ctr_rst)
begin
case(out) /1 Every time out changes, keep evaluating by reading ctr_rst

/1 If ctr_rst is O; keep incrementing; if not nextState is O
/1 Observe that nextState is feeding the D Flip-Flop

3'd0: begin
nextState=ctr_rst? 3'd0:3'd1;
err=1'd0;
end
3'd1: begin
nextState=ctr_rst? 3'd0:3'd2;
err=1'd0;
end
C 277

Do not forget to include a DEFAULT state if you chose to implement this way

You can approach this problem in the traditional Boolean reduction method as well (Draw state machine;
encode truth table; get equations; use basic gates). Next slide contains some sample outputs

Counter — Sample Output

» Shown at the right are the
values of ctr_rst and out for

a sample simulation run

1. Outisinitially X (cycle 0)

2. Outis 0 on posedge (rst=1). By
definition, rst will be held HIGH
in first 2 cycles (Cycle 100)

3. Outis 0 (rst=1) (Cycle 200)

4. Outis being incremented from
0->1->2 (see cycles 300,400 and

500). At 500, ctr_rstis 1
5. So, Out=0 on next posedge (cycle 600)

6. Again, Out is being incrmented
from 0->1->2 (cycles 600, 700 &
800). At 800, ctr_rstis 1

7. So, Out=0 on next posedge (cycle 900)

k%

T K R E R LSRR R

: time -

time -

clk

1

time : -

clk

time :

Telk

Lime -

clk

time :

clk

time:

clk

-tbtime -

clk

time :

clk

time :

clk

time :

clk

time -

clk

time :

clk

time :

clk

clk

cbx_ st
ctr_ﬁSﬁ
cti~rst
ctr _rst
ctr rst
ctxr _rstc
cﬁr_rst
ctbr_rst
ctr_réF
ctr_ rst
ctxr rsto

ctr rst

ctr_rstd il out =

o]

8]

out o

Cut x

100
Qut o

, 200
out o0

300
Cut O

400
Cut 1L

500

_Out 2

600

700
Cut 1

800

_Out 2

S00

Oout iﬁwr }
1000
Cut 1 .
"31100
Cut 2 :

1200

1200

ctr rst 1 Out 0O

Cycle
Cycle

Cycle

Cyc;e
Cycle
Cycle
Cycler
Cycle

Cyelé

Cyele - .
Cycle
Cycle
Cycle

Cycle

Sample Output - Continued

Out is being continuously incremented
now from 0->1->2->3->4->5 (see cycles
2000,2100,2200,2300,2400,2500)
From 2600 onwards, Out retains the
final value of 5 (see cycles 2600, 2700
and 2800)

At cycle 2800, ctr_rst goes HIGH

At the next clock, Out is reset to ZERO

#

HE

I+ H

A gy TR F RN

time:
clk

time:
clk

1

time:’

clk

time:
clk

time:

time:

clk

time:

- clk

time:

clk

time:

clk

time:

clk

1

B U

2000 Cycle

ctr _rst 0 Out 0
2100 Cycle
ctr_rst 0 Qut 1
: 2200 Cycle
Ctr_rst 0 Out 2 :
2300 Cycle
ctr rst 0 Out 3
' 2400 Cycle
clk 1 ctr rst 0 Out 4
2500 Cycle
Ctx_rst 0 Out 5
2600 Cycle
ctr. rst O Out 5
| 2700 Cycle
ctr_rst 0 Out 5
2800 Cycle
ctr rst 1 Out 5 .
2500 Cycle .
ctr rst 0 Out 0

Sample Output — Special Case (Hold Out at

Zero)
Over cycles 1000, 1100 and 1200, Counter tcirf;:l ctr rs‘t) out 11000 Cycle
IS incrementing # T T |
At 1200, it saw ctr_rstis 1. Soin the next § "ns’, ctr rst 0 our o Yole
cycle (cycle 1300), Out is ZERO # -
At 1300, ctr_rst is still1. So in next cycle ﬁ thf::l ctr st out 1200 Cyele
(cycle 1400), Out is still ZERO f - R
At 1400, ctr_rst is still 1. So in next cycle E té‘fi:l ctr st 1 out 01300 Cycle
(cycle 1500), Out is still ZERO i | - | |
At 1500, ctr_rstis O due to which counter I té‘fﬁ‘l 1400 Cycle
:) ctr rst 1 Qut 0

resumes counting (You can see that it : - o
incremented from 0 to 1 in cycle 1600) # time: 1500 Cycle

t clk 1 ctr rst 0 Out 0

t time: 1600 Cycle

clk 1 ctr rst 0 Qut 1

