
CS/ECE 552, Spring 2012

Discussion Session 7

CS/ECE 552
Ramkumar Ravi

12 Mar 2012

Mark your calendar

 IMPORTANT DATES

 03/14 – Design Overview due

 03/19 – HW4 due; HW5 out

 03/23 – Project Demo I (also due in class are workplan and
schedule for demo 2. If you have already included this in your
project plan, then you need not submit again)

 04/02 – SPRING BREAK :)

TODAY

→ IMPORTANT: Only King-Lab machines support Wiscalculator

→ Demo1 tools usage and other requirements

→ HW4 RF bypass discussion

→ Problem 5 discussion

→ other questions/concerns

Project Tools – WISC-SP12 ASSEMBLER

 Information on this tool is available here:
http://pages.cs.wisc.edu/~david/courses/cs552/s12/includes/assembler.html

 This tool assembles programs to be loaded into memory.
 Inputs: *.asm file
 Outputs: an object file and a listing for your reference

 The path /p/course/cs552-david/public/html/S12/handouts/bins
must be present in your .bashrc.local or .cshrc.local

 USAGE: assemble.sh <your_file>.asm
 The above command will create 6 files, loadfile_all.img, loadfile.lst,

loadfile_0,1,2,3.img. The assembler produces a warning in case of
any errors in the *.asm file

 For Demo I, you need to use only the loadfile_all.img (place this file
in the same location where your memory2c.v file is)

http://pages.cs.wisc.edu/~david/courses/cs552/s12/includes/assembler.html

WISC-SP12 SIMULATOR/DEBUGGER

 Information on this tool called Wiscalculator is available here:
http://pages.cs.wisc.edu/~david/courses/cs552/s12/includes/wisc-sim.html

 This tool reads the output of the assembler and executes it
 Inputs: loadfile_all.img (for DEMO I)
 Outputs: .trace and .ptrace

 The path /p/course/cs552-david/public/html/S12/handouts/bins
must be present in your .bashrc.local or .cshrc.local

 USAGE: wiscalculator loadfile_all.img
 The above command will run the program and print a step by step

listing of the instructions executed and what registers they write to

http://pages.cs.wisc.edu/~david/courses/cs552/s12/includes/wisc-sim.html

EXAMPLE OUTPUTS
(24)$ assemble.sh myfile.asm

Created the following files

loadfile_0.img loadfile_1.img loadfile_2.img loadfile_3.img loadfile_all.img loadfile.lst

(25)$ wiscalculator loadfile_all.img

WISCalculator v1.0

Author Derek Hower

Type "help" for more information

Loading program...
Executing...
slbi r1, 0
INUM: 0 PC: 0x0000 REG: 1 VALUE: 0x0000
slbi r1, 85
INUM: 1 PC: 0x0002 REG: 1 VALUE: 0x0055
slli r2, r1, 8
INUM: 2 PC: 0x0004 REG: 2 VALUE: 0x5500
bnez r2, 2
INUM: 3 PC: 0x0006
halt
program halted
INUM: 4 PC: 0x000a
Program Finished

WISC-SP12 VERILOG COMMAND LINE
SIMULATION

 Information on this tool called wsrun.pl is available here:
http://pages.cs.wisc.edu/~david/courses/cs552/s12/handouts/wsrun.html

 This tool does a lot of stuff → Please go through the page to
understand

 For Demo 1, lets say you want to run easyTest.asm on your processor.
Then you should use

wsrun.pl -prog /p/course/cs552-david/public/html/S12/project/tests/public/complex_demo1/easyTest.asm proc_hier_bench *.v

 If your design is right and there are no errors, you will see an output
that says:
Verilog Simulation successful
Final log, saved in summary.log
CPI numbers and total instruction count will be printed

http://pages.cs.wisc.edu/~david/courses/cs552/s12/handouts/wsrun.html

WISC-SP12 SYNTHESIS SCRIPT

 Information on this tool called synth.pl is available here:
http://pages.cs.wisc.edu/~david/courses/cs552/s12/includes/synthesis.html

 This tool does a lot of stuff → Please go through the page to
understand

 Remember that the code that you submit for DEMO I needs to be
synthesizable. If the synthesis files are missing or if the cell area of the
processor is reported as 0, NO CREDIT WILL BE GIVEN FOR DEMO I

 Also note that TB files are not supposed to be synthesized

http://pages.cs.wisc.edu/~david/courses/cs552/s12/includes/synthesis.html

GENERAL PROJECT STRUCTURE

 Top Level module: proc_hier.v (Your processor with clk-rst module
added. Similar to what you did for HW3)

 In proc_hier.v, you will instantiate proc.v which will contain your
processor code

 You will use proc_hier_bench.v as the testbench for non-pipelined
processor (WARNING: Do not EDIT this file)

 You will use the single cycle memory for Demo I. The source code
along with the synthesizable version is available here

http://pages.cs.wisc.edu/~david/courses/cs552/S12/includes/single-cycle-mem.html

http://pages.cs.wisc.edu/~david/courses/cs552/S12/includes/single-cycle-mem.html

SUBMISSION INSTRCUTIONS

 We will use handin for Demo I submission. All your .v files need to be in
one folder called demo1 which needs to be submitted (illutsrative
purposes)

 You will use handin command to submit your folder
handin cs552-1 demo1 <path_to_your_demo1_folder>

 There will be ONE electronic submission per project group

 Failure to follow naming conventions, top level directory structure could
cause automatic grading to FAIL (POINTS WILL BE DEDUCTED)

 Vcheck for all *.v files (other than testbenches) is MANDATORY. You
would be reusing most of the modules designed in HW 1, 2 and 3.

Running Vcheck on Multiple files
contributed by – Mona Jalal

Copy the following into a file, filename.sh:

#! /bin/csh -f

foreach d (*.v)

 java Vcheck $d > $d.vcheck.out

end

Close the file and run chmod +x filename.sh.

Then type ./filename.sh.

This will Vcheck all the .v files in your current directory, assuming your
Vcheck

class files are also located there.

HW 4 problems
(Problem 1 and Problem 5)

RF Bypass – Problem 1 (sample
solution)

Problem 5 – Example solution for (a)

→ Dependences

→ With NO forwarding

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

