
CS/ECE 552, Spring 2012

Discussion Session 8

CS/ECE 552
Ramkumar Ravi

19 Mar 2012

Mark your calendar

IMPORTANT DATES
 03/23 – Project Demo I (also due in class are workplan and schedule

for demo 2. If you have already included this in your project plan,
then you need not submit again)

 Demo I sign up sheets is with professor Wood
 04/09 – HW5 due (HW5 – 2 verilog memory design based problems

and 3 simple cache design based questions)

GENERAL PROJECT STRUCTURE
(Please follow hierarchy)

 Top Level module: proc_hier.v (Your processor with clk-rst module added.
Similar to what you did for HW3)

 In proc_hier.v, you will instantiate proc.v which will contain your processor
code

 You will use proc_hier_bench.v as the testbench for non-pipelined processor
(WARNING: Do not EDIT this file)

 You will use the single cycle memory for Demo I. The source code along with
the synthesizable version is available here

http://pages.cs.wisc.edu/~david/courses/cs552/S12/includes/single-cycle-mem.html

SUBMISSION INSTRCUTIONS

 We will use handin for Demo I submission. All your .v files need to be in one
folder called demo1 which needs to be submitted (A folder called demo1 will
be created in your respective handin directories)

 You will use handin command to submit your folder
handin cs552-1 demo1 <path_to_your_demo1_folder>

 There will be ONE electronic submission per project group

 Failure to follow naming conventions, top level directory structure could
cause automatic grading to FAIL (POINTS WILL BE DEDUCTED)

 Vcheck for all *.v files (other than testbenches) is MANDATORY. You would be
reusing most of the modules designed in HW 1, 2 and 3.

TESTS FOR DEMO1

● Tests for demo1 is available here

/p/course/cs552-david/public/html/S12/project/tests/public/complex_demo1

● Your design must ideally pass all the tests in the link above. However, a
small number of failures are accepted (provided you know the reason
for the failures)

HW5 – Problems 1 and 2

● Implement a hierarchical memory system in Verilog
● Level-1 WB cache with write-allocate policy
● Problem 1: Direct mapped cache with a four-banked, four-cycle memory
● Cache controller FSM design is the critical part of this problem (Please refer

to Figure 5.34 (page 533 of COD 4e, 2011) as a starting point)
● Verification will also be an important part of this exercise
● Please go through the problem specification from the website in detail

● In the second part of the problem , you will implement a 2-way set
associative cache (which is required for your project as well)

Problems 3, 4 and 5

● Keeping in mind the time required to implement problems 1 and 2, I
am thinking about reducing the amount of work you will have to do
for the remaining problems [Yay !! Thank you TA :)]

● You will still have to spend about an hour or so on them
 [Right !! Thanks for nothing Mr. TA :(]

● Problem 3 → Given a direct mapped cache with some
configuration and address bits, indicate which bits correspond to
tag, index and offset. Also categorize hits/misses and so on

● Problem 4 → Repeat the same for a 2-way set associative cache
● Problem 5 → Given a cache with certain parameters, calculate

cache capacity and total number of bits needed to implement it

