
Problem 1
Solution presented in discussion session

Problems 2 and 3
Involves the use of synthesis scripts

Problem 4

beq $2, $3, foo
 add $3, $4, $5
 sub $5, $6, $7
 or $7, $8, $9
 foo: and $5, $6, $7

For this problem, since “no branch prediction” is done, the pipeline is stalled until the result of the
branch is known at the end of MEM stage. Note the true dependence (*) between or and and
instruction.

On Branch not taken:

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14
beq IF ID EX MEM WB
add stall stall Stall IF ID EX MEM WB
sub IF ID EX MEM WB
or IF ID EX MEM WB
and IF ID* ID* ID* EX MEM WB

On Branch taken:

Cycles 1 2 3 4 5 6 7 8 9
beq IF ID EX MEM WB
and stall stall stall IF ID EX MEM WB

Problem 5

(a) add $4, $4, $2
 sub $5, $3, $1
 lw $6, 200($3)
 add $7, $3, $6

Dependences

L1 add $4, $4, $2 RAW on $6 from L3 to L4
L2 sub $5, $3, $1
L3 lw $6, 200($3)
L4 add $7, $3, $6

No Forwarding

L1 add $4, $4, $2
L2 sub $5, $3, $1
L3 lw $6, 200($3)
 NOP
 NOP
L4 add $7, $3, $6

Full Forwarding

L1 add $4, $4, $2
L2 sub $5, $3, $1
L3 lw $6, 200($3)
 NOP
L4 add $7, $3, $6

(b) lw $1, 40($6)
add $6, $2, $2
sw $6, 50($1)

Dependences

L1 lw $1, 40($6) RAW on $1 from L1 to L3
L2 add $6, $2, $2 RAW on $6 from L2 to L3
L3 sw $6, 50($1) WAR on $6 from L1 to L2 and L3

No Forwarding

L1 lw $1, 40($6) Delay L3 to avoid RAW hazard on

$1 from L1 L2 add $6, $2, $2
 NOP
L3 sw $6, 50($1)

Full Forwarding

L1 lw $1, 40($6) No RAW hazard on $1 from L1

(forwarded) L2 add $6, $2, $2
L3 sw $6, 50($1)

(c) lw $5, -16($5)
 sw $5, -16($5)
 add $5, $5, $5

Dependences

L1 lw $5, -16($5) RAW on $5 from L1 to L2 and L3
L2 sw $5, -16($5) WAR on $5 from L1 and L2 to L3
L3 add $5, $5, $5 WAW on $5 from L1 to L3

No Forwarding

L1 lw $5, -16($5) Delay L2 to avoid RAW hazard on

$5 from L1

 NOP
 NOP
L2 sw $5, -16($5)
L3 add $5, $5, $5

Full Forwarding

L1 lw $5, -16($5) Delay L2 to avoid RAW hazard on

$5 from L1
Value for $5 is forwarded from
L2 now

 NOP
L2 sw $5, -16($5)
L3 add $5, $5, $5

Problem 6

4.24.1
 Always taken Always not-taken
A 3 / 4 = 75% 1 / 4 = 25%
B 3 / 5 = 60% 2 / 5 = 40%

4.24.2
 Outcomes Predictor value at time

of prediction
Correct (C) or Incorrect

(I)
Accuracy

A T, T, NT, T 0, 1, 2, 1 I, I, I, I 0%
B T, T, T, NT 0, 1, 2, 3 I, I, C, I 25%

4.24.3
 Outcomes Predictor value at time of

prediction
Correct (C) or Incorrect

(I)
Accuracy

A T, T, NT, T 1st occurrence: 0, 1, 2, 1
2nd occurrence: 2, 3, 3, 2
3rd occurrence: 3, 3, 3, 2
4th occurrence: 3, 3, 3, 2

C, C, I, C 75%

B T, T, T, NT, NT 1st occurrence: 0, 1, 2, 3, 2
2nd occurrence: 1, 2, 3, 3, 2
3rd occurrence: 1, 2, 3, 3, 2

I, C, C, I, I 40%

Problem 7

 Fragment 1

Here, we cannot place the first lw into the delay slot because $4 is not overwritten on the taken
path. Likewise, the second lw cannot be placed in the delay slot because it is not known if $1 is
overwritten on the not-taken path. Because the branch condition depends on $5, the $5, the add
cannot be placed in the slot either. The correct answer is to insert a NOP in the delay slot

For the taken case, there is no performance difference from the original code (there is a 3-cycle
delay in both). When the branch is not-taken, the performance is worse because not-taken
prediction would have started with the first lw a cycle earlier. Thus, the average cycles lost is: 60% *
(0 cycles lost) + 40% * (1 cycle lost) = .4 cycles lost on average

 Fragment 2
For this problem, one common answer was to place the lw instruction into the delay slot. This does
not work if the branch is taken. On a branch taken event, the value of $4 will be overwritten
immediately by the sub instruction, allowing normal execution. However, this does not address
exceptions. By putting the lw into the delay slot, we could get an unexpected exception in this case

Consider the following code:
If (ptr != NULL)
 a = *ptr;

This would generate the code that looks something like

lw $4, PTR
beq $4, $0, NULL
lw $1, PTR
…
NULL: …

If you used delayed branches and moved the second lw into the delay slot, you will dereference *ptr
even when it is NULL. The correct answer involves duplicating the SUB instruction. Since we know
that the taken branch happens more often, we can optimize for this case. First, we put a copy of the
SUB instruction in the delay slot, and then jump to a new branch target called NewTarg, which sits

one instruction after Target. This way we would cover all the cases. In the taken case, we have
executed the SUB correctly, and in the not-taken case, the extra SUB is overwritten immediately by
the lw. Here the average cycles gained is: 60% * (1 cycle gained) + 40% * (1 cycle lost) = .2 cycles
gained on average

 Fragment 3

In the above fragment, the only instruction that can be placed in the delay slot is a NOP. One
common answer was to decrement the immediate value in the movei instruction to 20 and then
place the addi in the delay slot. However, because we do not know what happens to $2 between the
movei and addi, this is not correct (For example, imagine that the instruction right after movei was
another movei that loaded $2 again).

Because we insert a NOP into the delay slot, the effective penalty of the taken branch is 3 cycles.
Thus, the average cycles lost is: 60% * (0 cycle lost) + 40% * (1 cycle lost) = .4 cycles lost on average

Problem 8
Answer varies depending on the instruction that was assigned to a student

