
 CS 552 Spring 2012

Verilog II
Ramkumar Ravi

03/09

 CS 552 Spring 2012

Datatype Categories

 Net
 Represents a physical wire
 Describes structural connectivity
 Assigned to in continuous assignment statements
 Outputs of primitives and instantiated sub-modules

 Variables
 Used in behavioral procedural blocks
 Depending on how used, can represent either synchronous registers or wires in

combinational logic

 CS 552 Spring 2012

Variable Datatypes

 reg – scalar or vector binary values
 integer – 32 or more bits
 time – time values represented in 64 bits (unsigned)
 real – double precision values in 64 or more bits
 realtime – stores time as real (64-bit +)

 Assigned values only within a behavioral block
 CANNOT USE AS:

 Output of primitive gate or instantiated submodue
 LHS of continuous assignment
 Input or inout port within a module

 CS 552 Spring 2012

wire vs. reg

 Same “value” used both as 'wire and as 'reg'

module dff(q, d, clk);
output reg q; // reg declaration
input wire d, clk; // wire declaration, since module inputs
always @ (posedge clk) q <= d; // why is q reg and d wire

endmodule

module t_dff;
wire q, clk; // now declared as wire
reg d; // now declared as reg
dff FF (q, d, clk); // why is d reg and q wire
clockgen myclk(clk);
initial begin

d = 0;
#5 d = 1;

end
endmodule

 CS 552 Spring 2012

Memories and Multi-Dimensional Arrays

 A memory is an array of n-bit registers
 reg [15:0] mem_name [0:127] // 128 16-bit words
 reg array_2D [15:0] [0:127] // 2D array of 1-bit regs

 Can only access full word of memory
 mem_name [122] = 35; // assigns word
 mem_name [13][5] = 1; // illegal
 array_2D[122] = 35 // illegal – causes compilation error
 array_2D[13][5] = 1 // assigns bit

 Can use continuous assign to read bits
 assign mem_val = mem[13] // get word in slot 13
 assign out = mem_val[5] // get value in bit 5 of word
 assign dataout = mem[addr];
 assign databit = dataout[bitpos];

6

Implying Flops

clk

d q

Standard D-FF
with no reset

reg q;

always @(posedge clk)
 q <= d;

reg [11:0] DAC_val;

always @(posedge clk)
 DAC_val <= result[11:0];

It can be
A vector

too

Be careful… Yes, a non–reset flop is smaller than a reset Flop,
but most of the time you need to reset your flops.

Always error on the side of reseting the flop if you are at all
uncertain.

7

Implying Flops (synchronous reset)

reg q;

always @(posedge clk)
 if (!rst_n)
 q <= 1’b0; //synch reset
 else
 q <= d;

How does this synthesize?

clk

d
q

Cell library might not contain a
synch reset flop. Synthesis
might combine 2 standard
cells

rst_n

Many cell libraries don’t contain synchronous reset flops.
This means the synthesizer will have to combine 2 (or more)
standard cell to achieve the desired function… Hmmm? Is
this efficient?

8

Implying Flops (asynch reset)

clk

d q

D-FF with
asynch reset

R

rst_n reg q;

always @(posedge clk or negedge rst_n)
 if (!rst_n)
 q <= 1’b0;
 else
 q <= d;

Cell libraries will contain an asynch reset flop. It
is usually only slightly larger than a flop with no
reset. This is probably your best bet for most
flops.

Reset has its affect asynchronous from clock. What if reset is deasserting
at the same time as a + clock edge? Is this the cause of a potential meta-
stability issue?

9

Blocking assignment example
 Called blocking because….

 The evaluation of subsequent statements <RHS> are blocked, until the <LHS>
assignment of the current statement is completed.

d

clk

q1 q2 q3

Lets code this

module pipe(clk, d, q);

input clk,d;
output q;
reg q;

always @(posedge clk) begin
 q1 = d;
 q2 = q1;
 q3 = q2;
end

endmodule

Simulate this in your head…

Remember blocking behavior of:
<LHS> assigned before
<RHS> of next evaluated.

Does this work as intended?

10

More on Non-Blocking
 Lets try that again

d

clk

q1 q2 q3

Lets code this

module pipe(clk, d, q);

input clk,d;
output q;
reg q;

always @(posedge clk) begin
 q1 <= d;
 q2 <= q1;
 q3 <= q2;
End

endmodule;

With non-blocking statements the
<RHS> of subsequent statements
are not blocked. They are all
evaluated simultaneously.

The assignment to the <LHS> is then
scheduled to occur.

This will work as intended.

11

Verilog Stratified Event Queue [2]

within a block,
blocking

assignments,
are in order

12

So Blocking is no good and we should
always use Non-Blocking??

 Consider combinational logic

module ao4(z,a,b,c,d);

input a,b,c,d;
output z;

reg z,tmp1,tmp2;

always @(a,b,c,d) begin
 tmp1 <= a & b;
 tmp2 <= c & d;
 z <= tmp1 | tmp2;
end
endmodule

Does this work?

The inputs (a,b,c,d) in the sensitivity list
change, and the always block is
evaluated.

New assignments are scheduled for tmp1
& tmp2 variables.

A new assignment is scheduled for z using
the previous tmp1 & tmp2 values.

If and Else If constructs

● In the next few slides we will introduce the if and else if constructs in verilog

● However note that Vcheck does not permit the use of these statements for this
course

● Knowledge on if and else if constructs will help us in understanding the case
statements which will be introduced later

14

if…else if…else statement
 General forms…

If (condition) begin
 <statement1>;
 <statement2>;
end

If (condition)
 begin
 <statement1>;
 <statement2>;
 end
else
 begin
 <statement3>;
 <statement4>;
 end

If (condition)
 begin
 <statement1>;
 <statement2>;
 end
else if (condition2)
 begin
 <statement3>;
 <statement4>;
 end
else
 begin
 <statement5>;
 <statement6>;
 end

Of course the compound
statements formed with
begin/end are optional.

Multiple else if’s can be
strung along indefinitely

15

How does and if…else if…else statement
synthesize?

• Does not conditionally “execute” block of “code”

• Does not conditionally create hardware!

• It makes a multiplexer or selecting logic

• Generally:
Hardware for both paths is created

Both paths “compute” simultaneously

The result is selected depending on the condition

If (func_add)
 alu = a + b;
else if (func_and)
 alu = a & b;
Else
 alu = 8’h00;

+
1

0

1

0

&

8’h00

8

a[7:0]

b[7:0]

func_addfunc_and

8

alu

16

if statement synthesis (continued)

if (a)
 func = c & d;
else if (b)
 func = c | d;

How does this
synthesize?

en

1

0 d
q

c
d

a

b

func

Latch??

What you ask for is what you get!

func is of type register. When neither a or b are
asserted it didn’t not get a new value.

That means it must have remained the value it was
before.

That implies memory…i.e. a latch!

Always have an
else to any if to
avoid unintended
latches.

17

case Statements
 Verilog has three types of case statements:

• case, casex, and casez
 Performs bitwise match of expression and case item

• Both must have same bitwidth to match!

 case
• Can detect x and z! (good for testbenches)

 casez
• Uses z and ? as “don’t care” bits in case items and expression

 casex
• Uses x, z, and ? as “don’t care” bits in case items and expression

18

Case statement (general form)
case (expression)
 alternative1 : statement1; // any of these statements could
 alternative2 : statement2; // be a compound statement using
 alternative3 : statement3; // begin/end
 default : statement4 // always use default for synth stuff
endcase

parameter AND = 2’b00;
parameter OR = 2’b01;
parameter XOR = 2’b10;

case (alu_op)
 AND : alu = src1 & src2;
 OR : alu = src1 | src2;
 XOR : alu = src1 ^ src2;
 default : alu = src1 + src2;
endcase

Why always have a default?

Same reason as always having
an else with an if statement.

All cases are specified,
therefore no unintended
latches.

19

Using case To Detect x And z
 Only use this functionality in a testbench!

 Example taken from Verilog-2001 standard:

case (sig)
1’bz: $display(“Signal is floating.”);
1’bx: $display(“Signal is unknown.”);
default: $display(“Signal is %b.”, sig);

endcase

20

casex Statement
 Uses x, z, and ? as single-bit wildcards in case item and

expression
 Uses first match encountered

always @ (code) begin
casex (code) // case expression

2’b0?: control = 8’b00100110; // case item1
2’b10: control = 8’b11000010; // case item 2
2’b11: control = 8’b00111101; // case item 3

endcase
end

 What is the output for code = 2’b01?

 What is the output for code = 2’b1x?

21

casez Statement
 Uses z, and ? as single-bit wildcards in case item and

expression

always @ (code) begin
casez (code)

2’b0?: control = 8’b00100110; // item 1
2’bz1: control = 8’b11000010; // item 2

default: control = 8b’xxxxxxxx; // item 3
endcase

end

 What is the output for code = 2b’01?

 What is the output for code = 2b’zz?

22

Synthesis Of x And z
Only allowable uses of x is as “don’t care”, since
x cannot actually exist in hardware
in casex
in defaults of conditionals such as :

• The else clause of an if statement
• The default selection of a case statement

Only allowable use of z:
Constructs implying a 3-state output

• Of course it is helpful if your library supports this!

23

Don’t Cares
x, ?, or z within case item expression in casex
Does not actually output “don’t cares”!
Values for which input comparison to be ignored
Simplifies the case selection logic for the synthesis tool

casex (state)
 3’b0??: out = 1’b1;
 3’b10?: out = 1’b0;
 3’b11?: out = 1’b1;
endcase

1 1 1 1

0 0 1 1

state[1:0]

state[2]
00 01 11 10

0

1

out = state[0] + state[1]

24

Use of Don’t Care in Outputs
Can really reduce area

case (state)
 3’b001: out = 1’b1;
 3’b100: out = 1’b0;
 3’b110: out = 1’b1;
 default: out = 1’b0;
endcase

0 1 0 0

0 0 0 1

state[1:0]

state[2]
00 01 11 10

0

1

case (state)
 3’b001: out = 1’b1;
 3’b100: out = 1’b0;
 3’b110: out = 1’b1;
 default: out = 1’bx;
endcase

x 1 x x

0 x x 1

state[1:0]

state[2]
00 01 11 10

0

1

25

Unintentional Latches

assign y = b | z;
z

y

a

b

 Avoid structural feedback in continuous assignments, combinational
always

assign z = a | y;

 Avoid incomplete sensitivity lists in combinational always

 For conditional assignments, either:
• Set default values before statement

• Make sure LHS has value in every branch/condition

 For warning, set hdlin_check_no_latch true before compiling

26

Synthesis Example [1]

module Hmmm(input a, b, c, d, output reg out);
always @(a, b, c, d) begin
 if (a) out = c | d;
 else if (b) out = c & d;
end
endmodule

Area = 44.02

How will this synthesize?

a|b enables latch

Either c|d or c&d are passed
through an inverting mux
depending on state of a / b

27

Synthesis Example [2]

module Better(input a, b, c, d, output reg out);
always @(a, b, c, d) begin
 if (a) out = c | d;
 else if (b) out = c & d;
 else out = 1’b0;
end
endmodule

Area = 16.08

Perhaps what you meant was
that if not a or b then out should
be zero??

Does synthesize better…no latch!

28

Synthesis Example [3]

module BetterYet(input a, b, c, d, output reg out);
always @(a, b, c, d) begin
 if (a) out = c | d;
 else if (b) out = c & d;
 else out = 1’bx;
end
endmodule

Area = 12.99

But perhaps what you meant was if
neiter a nor b then you really don’t
care what out is.

Hey!, Why is b not used?

29

Mixing Flip-Flop Styles (1)
 What will this synthesize to?

module badFFstyle (output reg q2, input d, clk, rst_n);
 reg q1;

 always @(posedge clk)
 if (!rst_n)
 q1 <= 1'b0;
 else begin
 q1 <= d;
 q2 <= q1;
 end
endmodule

If !rst_n then q2 is not assigned…
It has to keep its prior value

30

Flip-Flop Synthesis (1)
 Area = 59.0

Note: q2 uses an enable flop (has mux built inside)
enabled off rst_n

31

Mixing Flip-Flop Styles (2)

module goodFFstyle (output reg q2, input d, clk, rst_n);
 reg q1;

 always @(posedge clk)
 if (!rst_n) q1 <= 1'b0;
 else q1 <= d;

 always @(posedge clk)
 q2 <= q1;

endmodule

Only combine like flops (same reset
structure) in a single always block.

If their reset structure differs, split into
separate always blocks as shown
here.

32

Flip-Flop Synthesis (2)
 Area = 50.2 (85% of original area)

Note: q2 is now just a simple flop as intended

33

What Have We Learned?
1) Sequential elements (flops & latches) should be inferred using

non-blocking “<=“ assignments

1) Combinational logic should be inferred using blocking “=“
statements.

1) Blocking and non-Blocking statements should not be mixed in the
same always block.

1) Plus 5 other guidelines of good coding outlined in the Cummings
SNUG paper.

34

Parameters
module adder(a,b,cin,sum,cout);

parameter WIDTH = 8; // default is 8

input [WIDTH-1:0] a,b;
input cin;
output [WIDTH-1:0] sum;
output cout;

assign {cout,sum} = a + b + cin

endmodule

module alu(src1,src2,dst,cin,cout);
 input [15:0] src1,src2;
 …
 //////////////////////////////////
 // Instantiate 16-bit adder //
 ////////////////////////////////
 adder #(16) add1(.a(src1),.b(src2),
 .cin(cin),.cout(cout),
 .sum(dst));

 …
endmodule

Instantiation of module can override a
parameter.

35

State Machines
State Machines:

• Next State and output
logic are combinational
blocks, which have
outputs dependent on the
current state.

• The current state is, of
course, stored by a FF.

• What is the best way to code State Machines?:
 Best to separate combinational (blocking) from sequential (non-blocking)

 Output logic and state transition logic can be coded in same always block since they
have the same inputs

 Output logic and state transition logic are ideally suited for a case statement

36

State Diagrams

S0

S2

S1

rst = 1

a = 0

b=0 / Y=1
a=0 / Y=1
a=1 / Y=1

a = 1/
Z = 1

b = 1/ Z = 1, Y=1

Inputs, a and b are 0,
unless specified otherwise

Outputs Y and Z are 0,
unless specified otherwise.

• Is this Mealy or Moore?

Lets code this

37

SM Coding
module fsm(clk,rst,a,b,Y,Z);

input clk,rst,a,b;
output Y,Z;

parameter S0 = 2’b00,
 S1 = 2’b01,
 S2 = 2’b10;

reg [1:0] state,nxt_state;

always @(posedge clk, posedge rst)
 if (rst)
 state <= S0;
 else
 state <= nxt_state;

always @ (state,a,b)
 case (state)
 S0 : if (a) begin
 nxt_state = S1;
 Z = 1; end
 else
 nxt_state = S0;
 S1 : begin
 Y=1;
 if (b) begin
 nxt_state = S2;
 Z=1; end
 else
 nxt_state = S1;
 end
 S2 : nxt_state = S0;
 endcase
endmodule

What problems do
we have here?

38

SM Coding (2nd try of combinational)

always @ (state,a,b)
 nxt_state = S0; // default to reset
 Z = 0; // default outputs
 Y = 0; // to avoid latches

 case (state)
 S0 : if (a) begin
 nxt_state = S1;
 Z = 1;
 end

 S1 : begin
 Y=1;
 if (b) begin
 nxt_state = S2;
 Z=1; end
 else nxt_state = S1;
 end
 default : nxt_state = S0;
 endcase
endmodule

Defaulting of assignments and having a default
to the case is highly recommended!

39

SM Coding Guidlines
1) Keep state assignment in separate always block using non-

blocking “<=“ assignment

2) Code state transition logic and output logic together in a
always block using blocking assignments

3) Assign default values to all outputs, and the nxt_state
registers. This helps avoid unintended latches

4) Remember to have a default to the case statement.
• Default should be (if possible) a state that transitions to the same state

as reset would take the SM to.

• Avoids latches

• Makes design more robust to spurious electrical/cosmic events.

40

Priority Encoder With casex
module priority_encoder (output reg [2:0] Code, output valid_data,

input [7:0] Data);

assign valid_data = |Data; // "reduction or" operator
always @ (Data)
 // encode the data
 casex (Data)
 8'b1xxxxxxx : Code = 7;
 8'b01xxxxxx : Code = 6;
 8'b001xxxxx : Code = 5;
 8'b0001xxxx : Code = 4;
 8'b00001xxx : Code = 3;
 8'b000001xx : Code = 2;
 8'b0000001x : Code = 1;
 8'b00000001 : Code = 0;
 default : Code = 3'bxxx; // should be at least one 1, don’t care
 endcase
endmodule

41

Exhaustive testing with for loops
For combinational designs w/ up to 8 or 9 inputs
Test ALL combinations of inputs to verify output
Could enumerate all test vectors, but don’t…
Generate them using a “for” loop!
reg [4:0] x;
initial begin

for (x = 0; x < 16; x = x + 1) #5;
// need a delay here!
end

Need to use “reg” type for loop variable? Why?

42

Why Loop Vector Has Extra Bit
Want to test all vectors 0000 to 1111

reg [3:0] x;
initial begin

for (x = 0; x < 16; x = x + 1)
#5; // need a delay here!

end
If x is 4 bits, it only gets up to 1111 => 15

1100 => 1101 => 1110 => 1111 => 0000 => 0001

x is never >= 16… so loop goes forever

43

while loops
 Executes until boolean condition is not true

 If boolean expression false from beginning it will never execute loop

reg [15:0] flag;
reg [4:0] index;

initial begin
 index=0;
 found=1’b0;
 while ((index<16) && (!found)) begin
 if (flag[index]) found = 1’b1;
 else index = index + 1;
 end
 if (!found) $display(“non-zero flag bit not found!”);
 else $display(“non-zero flag bit found in position %d”,index);
end

Handy for cases where
loop termination is a more
complex function.

Like a search

44

repeat Loop
 Good for a fixed number of iterations

 Repeat count can be a variable but…
− It is only evaluated when the loops starts
− If it changes during loop execution it won’t change the number of iterations

 Used in conjunction with @(posedge clk) it forms a handy & succinct
way to wait in testbenches for a fixed number of clocks

initial begin
 inc_DAC = 1’b1;
 repeat(4095) @(posedge clk); // bring DAC right up to point of rollover
 inc_DAC = 1’b0;
 inc_smpl = 1’b1;
 repeat(7)@(posedge clk); // bring sample count up to 7
 inc_smpl = 1’b0;
end

45

forever loops
 We got a glimpse of this already with clock

generation in testbenches.
 Only a $stop, $finish or a specific disable

can end a forever loop.

initial begin
 clk = 0;
 forever #10 clk = ~ clk;
end

Clock generator is by far the most
common use of a forever loop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

