CS/ECE 552: Introduction to Computer Architecture

Instructor: Mark D. Hill
T.A.: Brandon Schwartz

Section 2 Fall 2000

 University of Wisconsin-MadisonLecture notes originally created by Mark D. Hill Updated by T.N. Vijaykumar (Purdue) \& Mark D. Hill

© 2000 by Mark D. Hill

552 In Context

Prerequisites

- 352 - gates up to multiplexors and adders
- 354 - high-level language down to machine language interface or instruction set architecture (ISA)

This course -- 552 -- puts it all together

- Implement the logic that provides ISA interface
- Must do datapath and control, but no magic
- Manage tremendous complexity with abstraction

Follow-on courses explore trade-offs: e.g., 752, 755, 757

Computer Architecture =

Instruction Set Architecture

- ... the attributes of a [computing] system as seen by the programmer. i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls, the logic design, and the physical implementation. -- Amdahl, Blaaw, \& Brooks, 1964
-E.g., Intel x86, Sun SPARC, IBM PowerPC, SGI MIPS
+ Machine Organization
- ALUs, Buses, Caches, Memories, etc.

Why Study Computer Architecture?

(1) To become a computer designer

- Many who have many this class design the computers you use
(2) To learn what is under the hood of your computer
- To better understand when things break
- To see better how to design high-performance applications
- To aid design of system software (OS, compilers, libraries)
(3) Because it is intellectually fascinating!

Why is Computer Architecture so Dynamic?

Everything is changing

- At non-uniform rates
- With inflection points

Technology Push

Application Pull

Technology Push, cont.

Technology advances at varying rates

- E.g., DRAM capacity: about 60% per year
- But DRAM speed: about 10% per year
- Need more caches!

Inflection Points

- Crossover causes rapid change
- E.g. Enough devices for processor on chip: microprocessor
- Soon: system on a chip \& chip multiprocessors

Application Pull

Corollary to Moore’s Law: Cost halves every two years

- In a decade you can buy a computer for less than its sales tax today. --Jim Gray

Computers cost-effective for

- National security -- weapons design
- Enterprise computing -- banking
- Departmental computing -- computer aided design
- Personal computing -- speadsheets, email, web
- Embedded computing -- microcode in electric shaver

CS/ECE 552 Lecture Notes: Chapter 1
CS/ECE 552 Lecture Notes: Chapter 1

Abstraction - E.g.,

2-to-1 Mux
Interface:

Implementations

- gates (fast or slow), pass transistors

What's the Big Deal?

E.g., a processor interface book

Worse for computers, in general - a tower of abstraction

- Application software
- System software (OS and compiler/assembler/linker)
- Hardware (CPU, memory, I/O)

Each interface is complex and implemented with layer below
\bigcirc Abstraction keeps unnecessary details hidden
Hundreds of engineers to build one product

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 1

Basic Division of Hardware

In time

- Fetch the instruction from memory
add r1, r2, r3
- Decode the instruction - what does this mean?
- Read input operands
read r2, r3
- Perform operation
add
- Write results
write to r1
- Determine next instruction
pc := pc + 4

Basic Division of Hardware

In space and time

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 1

Classes of Computers

- Supercomputer	$\$ 5$ million -20 million
- Mainframe	$\$ 0.5$ million -4 million
- Server	$\$ 10$ thousand -200 thousand
- PC/Workstation	$\$ 1$ thousand -10 thousand

- Network Computer/WebTV \$300-1000
- Embedded computer \$1-10 ("invisible" like electric motor)
- Future Disposables 1-100 cents!

Building computer chips

Complex multi-step process

- slice ingots -> wafers
- process wafers (many steps) -> patterned wafers
- dice patterned wafers -> dies
- test dies -> good dies
- bond good die to package -> packaged dies (parts)
- test parts -> good parts
- ship to customers -> make money!
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 1

Performance vs. Design Time
Time to deliver product is important
E.g., a new design will take 3 years to complete

- will be 3 times faster
- but if technology improves 50% per year
- in 3 years $1.5^{3}=3.38$
- so new design is worse!

Building computer chips

Bottom Line

0
 Designers must know BOTH software and hardware

[^0]
[^0]: Both contribute to layers of abstraction of computers
 IC costs and performance
 Compilers and Operating Systems

