Performance of Computers

Which computer is fastest?
Not so simple

- scientific simulation - FP performance
- program development - Integer performance
- commercial work - I/O

Forecast
Time and performance
Iron law
MIPS and MFLOPS
Which programs and how to average
Amdahl's law

Performance of Computers

Want to buy the fastest computer for what you want to do

- workload is important

Want to design the fastest computer for what they want to pay

- BUT cost is an important criterion

Defining Performance

What is important to who
Computer system user

- minimize elapsed time for program = time_end - time_start
- called response time

Computer center manager

- maximize completion rate $=\# j o b s /$ second
- called throughput

Response Time vs. Throughput

Is throughput $=1 /$ av. response time?

- only if NO overlap
- with overlap, throughput > 1/av.response time
- e.g., a lunch buffet - assume 5 entrees
- each person takes 2 minutes at every entree
- throughput is 1 person every 2 minutes
- BUT time to fill up tray is 10 minutes
- why and what would the throughput be, otherwise?
because there are 5 people (each at 1 entree)
simultaneously; if there is no such overlap throughput $=1 / 10$
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 2

Improve Performance

Improve (a) response time or (b) throughput?

- faster CPU
- both (a) and (b)
- Add more CPUs
- (b) but (a) may be improved due to less queueing

What is Performance for us?

For computer architects

- CPU execution time = time spent running a program

Because people like faster to be bigger to match intuition

- performance $=1 / X$ time
- where $X=$ response, CPU execution, etc.

Elapsed time $=\mathrm{CPU}$ execution time $+\mathrm{I} / \mathrm{O}$ wait
We will concentrate mostly on CPU execution time

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 2

Performance Comparison

\squareMachine A is n times faster than machine B iff $\operatorname{perf}(A) / \operatorname{perf}(B)=\operatorname{time}(B) / \operatorname{time}(A)=n$

Machine A is $x \%$ faster than machine B iff

- $\operatorname{perf}(A) / \operatorname{perf}(B)=\operatorname{time}(B) / \operatorname{time}(A)=1+x / 100$
E.g., A 10s, B 15s
- $15 / 10=1.5=>A$ is 1.5 times faster than B
- $15 / 10=1+50 / 100=>A$ is 50% faster than B

Breaking down Performance

A program is broken into instructions

- H/W is aware of instructions, not programs

At lower level, H/W breaks intructions into cycles

- lower level state machines change state every cycle
E.g., 500 MHz PentiumllI runs 500M cycles/sec, 1 cycle $=2$ ns
E.g., 2 GHz PentiumX will run 2 G cycles/sec, 1 cycle $=0.5 \mathrm{~ns}$

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 2

Our Goal

Minimize time which is the product, NOT isolated terms

Common error to miss terms while devising optimizations

- E.g., ISA change to decrease instruction count
- BUT leads to CPU organization which makes clock slower

Iron law

- Time/program = instrs/program x cycles/instr x sec/cycle
sec/cycle (a.k.a. cycle time, clock time) - 'heartbeat' of computer
- mostly determined by technology and CPU organization
cycles/instr (a.k.a. CPI)
- mostly determined by ISA and CPU organization
- overlap among instructions makes this smaller
instr/program (a.k.a. instruction count)
- instrs executed NOT static code
- mostly determined by program, compiler, ISA
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 2

Other Metrics

```
MIPS and MFLOPS
MIPS = instruction count/(execution time x 10 6}
    = clock rate/(CPI x 10 }\mp@subsup{}{}{6}\mathrm{ )
```

BUT MIPS has problems

Problems with MIPS

E.g., without FP H/W, an FP op may take 50 single-cycle instrs
with FP H/W only one 2-cycle instr
Thus adding FP H/W

- CPI increases (why?) The FP op goes from 50/50 to 2/1
- but instrs/prog decreases more (why?) each of the FP op reduces from 50 to 1, factor of 50
- total execution time decreases
- For MIPS
- MIPS gets worse!

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 2

Other Metrics

MFLOPS = FP ops in program/(execution time $\times 10^{6}$)
Assuming FP ops independent of compiler and ISA

Assumption not true

- may not have divide in ISA
- optimizing compilers

Relative MIPS and normalized MFLOPS

- adds to confusion! (see book)

Problems with MIPS

Ignore program
Usually used to quote peak performance

- ideal conditions => guarantee not to exceed!!

When is MIPS ok?

- same compiler and same ISA
- e.g., same binary running on Pentium Pro and Pentium
- why? instrs/prog is constant and may be ignored

CS/ECE 552 Lecture Notes: Chapter 2

Rules

Use ONLY Time

Beware when reading, especially if details are omitted

Beware of Peak

Iron Law Example

Iron Law Example

Keep CPI of A 2.0 and CPI of B 1.2
For equal performance, if clock of B is 2 ns , what is clock of A ?
Time $(B) / \operatorname{Time}(A)=1=(N \times 2.0 \times \operatorname{clock}(A)) /(N \times 1.2 \times 2)$ $\operatorname{clock}(A)=1.2 \mathrm{~ns}$

Iron Law Example

Keep clock of A at 1 ns and clock of B at 2 ns
For equal performance, if CPI of B is 1.2 , what is CPI of A ?
Time $(B) / \operatorname{Time}(A)=1=(N \times 2 \times 1.2) /(N \times 1 \times \operatorname{CPI}(A))$
$\underline{\mathrm{CPI}(A)}=2.4$
© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 2

Which Programs

Execution time of what
Best case - you run the same set of programs everyday

- port them and time the whole "workload"

In reality, use benchmarks

- programs chosen to measure performance
- predict performance of actual workload (hopefully)
+ saves effort and money
- representative? honest?

How to average

Example (page 70)

	Machine A	Machine B
Program 1	1	10
Program 2	1000	100
Total	1001	110

One answer: total execution time, then B is how much faster than A? 9.1
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 2

Other Averages

E.g., 30 mph for first 10 miles

90 mph for next 10 miles. averatge speed?

Average speed $=(30+90) / 2$

WRONG
\square
Average speed $=$ total distance / total time

- 20 / ($10 / 30+10 / 90)$)
- 45 mph

How to average

Another: arithmetic mean (same result)
Arithmetic mean of times: $\left\{\sum_{1}^{n}\right.$ time $\left.(i)\right\} / n \quad$ for n programs $\mathrm{AM}(\mathrm{A})=1001 / 2=500.5$
$\mathrm{AM}(\mathrm{B})=110 / 2=55$
$500.5 / 55=9.1$
Valid only if programs run equally often, so use "weight" factors
Weighted arithmetic mean: $\quad\left\{\sum_{1}^{n}(\right.$ weight $(i) \times$ time $\left.(i))\right\} / n$
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 2

Harmonic Mean

Harmonic mean of rates $=\frac{1}{\left\{\sum_{1}^{n} \frac{1}{\operatorname{rate}(i)}\right\} / n}$

\rightarrow Use HM if forced to start and end with rates

Trick to do arithmetic mean of times but using rates and not times

Dealing with Ratios

E.g.,

	Machine A	Machine B
Program 1	1	10
Program 2	1000	100

If we take ratios, with respect to Machine A

	Machine A	Machine B
Program 1	$\underline{\underline{1}}$	$\underline{\underline{10}}$
Program 2	$\underline{\underline{1}}$	$\underline{\underline{0.1}}$

© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 2

Geometric Mean

Use geometric mean for ratios
geometric mean of ratios $=\sqrt[n]{\prod_{1}^{n} \text { ratio }(i)}$
\square Use GM if forced to use ratios

Independent of reference machine (math property)
In the example, GM for machine A is 1 , for machine B is also 1

- normalized with respect to either machine

Dealing with Ratios

average for machine A is $\underline{\underline{1}}$, average for machine B is $\underline{\underline{5.05}}$ If we take ratios, with respect to Machine B

	Machine A	Machine B
Program 1	$\underline{\underline{0.1}}$	$\underline{\underline{1}}$
Program 2	$\underline{\underline{10}}$	$\underline{\underline{1}}$

average for machine $A=\underline{5.05}$, average for machine $B=\underline{1}$ can't both be true!

	Don't use arithmetic mean on ratios (normalized numbers)
-	

But..
Geometric mean of ratios is not proportional to total time
AM in example says machine B is 9.1 times faster
GM says they are equal
If we took total execution time, A and B are equal only if

- program 1 is run 100 times more often than program 2

Generally, GM will mispredict for three or more machines

Summary

Use AM for times

Use HM if forced to use rates
Use GM if forced to use ratios

Better yet, use unnormalized numbers to compute time
© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 2

SPEC95

Benchmark	Description
go	AI, plays go
m88ksim	Motorola 88K chip simulator
gcc	Gnu compiler
compress	Unix utility compresses files
li	Lisp Interpreter
ijpeg	Graphic (de)compression
perl	Unix utility text processor
vortex	Database program

Benchmarks: SPEC95

System Performance Evaluation Cooperative
Latest is SPEC2K but Text uses SPEC95
8 integer and 10 floating point programs

- normalize run time with a SPARCstation 10/40
- GM of the normalized times

Some SPEC95 Programs

Benchmark	INT/FP	Description
m88ksim	Integer	Motorola 88K chip simulator
gcc	Integer	Gnu compiler
compress	Integer	Unix utility compresses files
vortex	Integer	Database program
su2cor	FP	Quantum physics; Monte carlo
hydro2d	FP	Navier Stokes equations
mgrid	FP	3-D potential field
wave5	FP	Electromagnetic particle simulation

Amdahl's Law

Why does the common case matter the most?
Speedup $=$ old time/new time $=$ new rate/old rate
Let an optimization speed ffraction of time by a factor of s

Spdup $=[(1-f)+f] \times$ oldtime $/([(1-f) \times$ oldtime $]+f / s \times$ oldtime $)$
$\rightarrow=1 /(1-f+f / s)$
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 2

Amdahl's Law Example, cont.

Your boss asks you to improve Pentium Posterior performance by

- improve the ALU used 95% of time, by 10%
- improve the memory pipeline used 5%, by a factor of 10

\mathbf{f}	\mathbf{s}	Speedup
95%	1.10	1.094
5%	10	1.047
5%	∞	1.052

Amdahl's Law Example

Your boss asks you to improve Pentium Posterior performance by

- improve the ALU used 95% of time, by 10%
- improve the memory pipeline used 5%, by a factor of 10

Let $f=$ fraction sped up and $s=$ the speedup on that fraction

- new_time $=(1-f)^{*}$ old_time $+(f / s)^{*}$ old_time
- Speedup $=$ new_rate $/$ old_rate $=$ old_time $/$ new_time
- Speedup $=$ old_time $/\left((1-\mathrm{f})^{*}\right.$ old_time $+(\mathrm{f} / \mathrm{s})^{*}$ old_time $)$

Amdahl's Law: Speedup = $1 /((1-f)+(f / s))$

Amdahl's Law: Limit

Summary of Chapter 2

Time and performance: Machine A n times faster than Machine B

- iff Time(B)/Time(A) $=\mathrm{n}$

Iron Law: Time/prog = Instr count \times CPI x Cycle time
Other Metrics: MIPS and MFLOPS

- Beware of peak and omitted details

Benchmarks: SPEC95
Summarize performance: AM for time, HM for rate, GM for ratio
Amdahl's Law: Speedup $=1 /(1-f+f / s)-$ common case fast

CS/ECE 552 Lecture Notes: Chapter 2

