
CS/ECE 552 Lecture Notes: Chapter 3 1© 2000 by Mark D. Hill

Instructions (354 Review)

Instructions are the “words” of a computer

Instruction set architecture (ISA) is its “vocabulary”

With a few other things, this defines the interface of computers

But implementations vary

We use MIPS ISA: simple, sensable, used in games & supercomp

Most common: x86 (IA-32): Intel Pentium* & PC-compatible proc.

Others: PowerPC (Mac), SPARC (Sun), Alpha (Compaq), ...

We won’t write programs

CS/ECE 552 Lecture Notes: Chapter 3 2© 2000 by Mark D. Hill

Forecast

Basics

Registers and ALU ops

Memory and load/store

Branches and jumps

And more . . .

CS/ECE 552 Lecture Notes: Chapter 3 3© 2000 by Mark D. Hill

Basics

C statement

• f = (g + h) - (i + j)

MIPS instructions

• add t0, g, h

• add t1, i, j

• sub f, t0, t1

Opcodes/mnemonic, operands, source/destination

CS/ECE 552 Lecture Notes: Chapter 3 4© 2000 by Mark D. Hill

Basics

Opcode: Specifies the kind of operation (mnemonic)

Operands: input and output data (source/destination)

Operands t0 & t1 are temps

One operation, two inputs, one output

Multiple instructions for one C statement

CS/ECE 552 Lecture Notes: Chapter 3 5© 2000 by Mark D. Hill

Why not have bigger instructions?

Why not have “f = (g + h) - (i + j) ” as one instruction?

Church’s thesis: A very primitive computer can compute anything
that a fancy computer can compute - need only logical functions,
read and write memory and data-dependent decisions

Therefore, ISA selected for practical reasons

• performance and cost, not computability

•

Regularity tends to improve both

• E.g., H/W to handle arbitrary number of operands

• complex and slow and NOT NECESSARY

CS/ECE 552 Lecture Notes: Chapter 3 6© 2000 by Mark D. Hill

Registers and ALU ops

Ok, I lied!

Operands must be registers, not variables

• add $8, $17, $18

• add $9, $19, $20

• sub $16, $8, $9

MIPS has 32 registers $0-$31 (figure next slide)

$8 & $9 are temps, $16 is f , $17 g , $18 h , $19 i , & $20 j

MIPS also allows one constant called “immediate”

• later we will see immediate is 16 bits [-32768, 32767]

CS/ECE 552 Lecture Notes: Chapter 3 7© 2000 by Mark D. Hill

Registers and ALU

$0

$31

Processor

R
eg

is
te

rs

ALU

CS/ECE 552 Lecture Notes: Chapter 3 8© 2000 by Mark D. Hill

ALU ops

Some ALU ops:

• add, addi, addu, addiu (immediate, unsigned)

• sub . . .

• mul, div - weird!

• and, andi

• or, ori

• sll, srl, . . .

Why registers? fit in instructions, smaller is faster

Are registers enough?

CS/ECE 552 Lecture Notes: Chapter 3 9© 2000 by Mark D. Hill

Memory and load/store

But need more than 32 words of storage

An array of locations M[addr], indexed by addr (figure next slide)

Data movement (on words or integers)

• load word for reg <-- memory

• lw $17, 1002 # get input g

• store word for reg --> memory

• sw $16, 1001 # save output f ; Note: destination last!

CS/ECE 552 Lecture Notes: Chapter 3 10© 2000 by Mark D. Hill

Memory and load/store

$0

$31

Processor

R
eg

is
te

rs

ALU

Memory
0
1
2
3

maxmem

1001
1002

f
g

CS/ECE 552 Lecture Notes: Chapter 3 11© 2000 by Mark D. Hill

Memory and load/store

I lied again!

• We need address bytes for character strings

• Words take 4 bytes

• Therefore, word addresses must be multiples of 4

• Figure next slide

CS/ECE 552 Lecture Notes: Chapter 3 12© 2000 by Mark D. Hill

Memory and load/store

$0

$31

Processor

R
eg

is
te

rs

ALU

Memory
0

1
2
3

maxmem

4004
4008

f
g

CS/ECE 552 Lecture Notes: Chapter 3 13© 2000 by Mark D. Hill

Memory and load/store

Important for arrays

• A[i] = A[i] + h (figure next slide)

• # $8 - temp , $18 - h, $21 - (i x 4)

• Astart is 8000

• lw $8, Astart($21) # or 8000($21)

• add $8, $18, $8

• sw $8, Astart($21)

MIPS has other load/store for bytes and halfwords

CS/ECE 552 Lecture Notes: Chapter 3 14© 2000 by Mark D. Hill

Memory and load/stor4

$0

$31

Processor

R
eg

is
te

rs

ALU

Memory
0

maxmem

4004
4008

f
g

8000
8004

A[0]
A[1]

8008 A[2]

CS/ECE 552 Lecture Notes: Chapter 3 15© 2000 by Mark D. Hill

Aside on “Endian”

Big endian: MSB at address xxxxxx00

• e.g., IBM, SPARC

Little endian: MSB at address xxxxxx11

• e.g., Intel x86 (Windows NT requires it)

Mode selectable

• e.g., PowerPC, MIPS

CS/ECE 552 Lecture Notes: Chapter 3 16© 2000 by Mark D. Hill

Branches and Jumps

While (i != j) {

j= j + i;

i= i + 1;

} # $8 is i, $9 is j, $10 is k

Loop: beq $8, $9, Exit # not !=

 add $9, $9, $8

 addi $8, $8 , 1

 j Loop

Exit:

CS/ECE 552 Lecture Notes: Chapter 3 17© 2000 by Mark D. Hill

Branches and Jumps

Better yet:

beq $8, $9, Exit # not !=

Loop: add $9, $9, $8

 addi $8, $8 , 1

 bne $8, $9, Loop

Exit:

Let compilers worry about such optimizations

CS/ECE 552 Lecture Notes: Chapter 3 18© 2000 by Mark D. Hill

Branches and Jumps

What does bne do really?

read $8 ; read $9 , compare

set PC = PC + 4 or PC = Target

To do compares other than = or !=

• e.g., blt $8, $9, Target # assembler pseudo-instr

• expanded to

• slt $1, $8, $9 # $1 == ($8<$9) == ($8-$9 < 0)

• bne $1, $0, Target # $0 is always 0

CS/ECE 552 Lecture Notes: Chapter 3 19© 2000 by Mark D. Hill

Branches and Jumps

Other MIPS branches/jumps

beq $8, $9, imm # if ($8 == $9) PC = PC + imm<<2 else PC += 4

bne . . .

slt, sle, sgt, sge

• with immediate, unsigned

j addr # PC = addr

jr $12 # PC = $12

jal addr # $31 = PC+4; PC = addr; used for procedure calls

CS/ECE 552 Lecture Notes: Chapter 3 20© 2000 by Mark D. Hill

Layers of Software

Notation - program: input data -> output data

• executable: input data -> output data

• loader: executable file -> executable in memory

• linker: object files -> executable file

• assembler: assembly file -> object file

• compiler: HLL file -> assembly file

• editor: editor commands -> HLL file

Only possible because programs can be manipulated as data

CS/ECE 552 Lecture Notes: Chapter 3 21© 2000 by Mark D. Hill

MIPS Machine Language

All 32-bit instructions

A.L. add $1, $2, $3

 33222222222211111111110000000000
 10987654321098765432109876543210

M.L. 00000000010000110000100000010000

 000000 00010 00011 00001 00000 010000

 alu-rr 2 3 1 zero add/signed

CS/ECE 552 Lecture Notes: Chapter 3 22© 2000 by Mark D. Hill

Instruction Format

R-format

 opcode rs rt rd shamt funct

 6 5 5 5 5 6

Digression:

How do you store the number 4,392,976 ?

• Same as add $1, $2, $3

Stored program: instructions are represented as numbers

• programs can be read/written in memory like numbers

CS/ECE 552 Lecture Notes: Chapter 3 23© 2000 by Mark D. Hill

Instruction Format

Other R-format: addu, sub, subi, etc

A.L. lw $1, 100($2)

M.L. 100011 00010 00001 0000000001100100

 lw 2 1 100 (in binary)

I-format

 opcode rs rt address/immediate

 6 5 5 16

CS/ECE 552 Lecture Notes: Chapter 3 24© 2000 by Mark D. Hill

Instruction Format

I-format also used for ALU ops with immediates

addi $1, $2, 100

001000 00010 00001 0000000001100100

What about constants larger than 16 bits = [-32768, 32767]

1100 0000 0000 0000 1111?

lui $4,12 # $4 == 0000 0000 1100 0000 0000 0000 0000

ori $4,$4,15 # $4 == 0000 0000 1100 0000 0000 0000 1111

All loads and stores use I-format

CS/ECE 552 Lecture Notes: Chapter 3 25© 2000 by Mark D. Hill

Instruction Format

beq $1, $2, 7

000100 00001 00010 0000 0000 0000 0111

PC = PC + (0000 0111 << 2) # word offset

Finally, J-format

j address

opcode addr

 6 26

addr is weird in MIPS: 4 MSB of PC // addr // 00

CS/ECE 552 Lecture Notes: Chapter 3 26© 2000 by Mark D. Hill

Summary: Instruction Formats

R-format: opcode rs rt rd shamt funct

 6 5 5 5 5 6

I-format: opcode rs rt address/immediate

 6 5 5 16

J-format: opcode addr

 6 26

Instr decode - Theory: Inst bits -> identify instrs -> control signals

Practice: Instruction bits -> control signals

CS/ECE 552 Lecture Notes: Chapter 3 27© 2000 by Mark D. Hill

Procedure Calls

See section 3.6 for more details

• save registers Proc: save more registers

• set up parameters do function

• call procedure set up results

• get results restore more registers

• restore registers return

jal is only special instruction: the rest is software convention

CS/ECE 552 Lecture Notes: Chapter 3 28© 2000 by Mark D. Hill

Procedure Calls

An important data structure is the stack

Stack grows from larger to smaller addresses

$29 is the stack pointer, it points just beyond valid data

Push $2 : Pop $2 :

• addi $29, $29, -4 lw $2, 4($29)

• sw $2, 4($29) addi $29, $29, 4

• the order cannot be changed. why? interrupts

CS/ECE 552 Lecture Notes: Chapter 3 29© 2000 by Mark D. Hill

Procedure Example

swap(int v[], ink) {
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
}

$4 is v[] & $5 is k -- 1st & 2nd incoming argument
$8, $9 & $10 are temporaties that callee can use w/o saving

swap: add $9,$5,$5 # $9 = k+k
 add $9,$9,$9 # $9 = k*4
 add $9,$4,$9 # $9 = v + k*4 = &(v[k])
 lw $8,0($9) # $8 = temp = v[k]
 lw $10,4($9) # $10 = v[k+1]
 sw $10,0($9) # v[k] = v[k+1]
 sw $8,4($9) # v[k+1] = temp
 jr $31 # return

CS/ECE 552 Lecture Notes: Chapter 3 30© 2000 by Mark D. Hill

Addressing modes

There are many ways of getting data

Register addressing

add $1, $2, $3

op rs rt rd . . . funct

register

CS/ECE 552 Lecture Notes: Chapter 3 31© 2000 by Mark D. Hill

Addressing Modes

Base addressing (aka displacement)

lw $1, 100($2) # $2 == 400, M[500] == 42

op rs rt address

register

Memory

Effective

address
42

400

100

CS/ECE 552 Lecture Notes: Chapter 3 32© 2000 by Mark D. Hill

Addressing Modes

Immediate addressing

addi $1, $2, 100

op rs rt immediate

CS/ECE 552 Lecture Notes: Chapter 3 33© 2000 by Mark D. Hill

Addressing Modes

PC relative addressing

beq $1, $2, 100 # if ($1 == $2) PC = PC + 100

op rs rt address

PC

Memory

Effective

address

CS/ECE 552 Lecture Notes: Chapter 3 34© 2000 by Mark D. Hill

Addressing Modes

Not found in MIPS

Indexed: add two registers - base + index

Indirect: M[M[addr]] - two memory references

Autoincrement/decrement: add data size

Autoupdate - found in IBM PowerPC, HP PA-RISC

• like displacement but update register

CS/ECE 552 Lecture Notes: Chapter 3 35© 2000 by Mark D. Hill

Addressing Modes

Autoupdate

lwupdate $1, 24[$2] # $1 = M[$2+24]; $2 = $2+24

op rs rt address

register

Memory

Effective

address

Delay

CS/ECE 552 Lecture Notes: Chapter 3 36© 2000 by Mark D. Hill

Addressing Modes

for (i = 0, I < N, i +=1)
 sum += A[i];

$7 - sum, $8 - address of a[i], $9 - N, $2 - tmp, $3 - i*4

inner: new inner:

 lw $2, 0($8) lwupdate $2, 4($8)
 addi $8, $8, 4
 add add $7, $7, $2

Any problems with new inner ? before the loop: sub $8, $8, 4

CS/ECE 552 Lecture Notes: Chapter 3 37© 2000 by Mark D. Hill

How to Choose ISA

Minimize what?

• Instrs/prog x cycles/instr x sec/cycle

In 1985-1995 technology, simple modes like MIPS good.

 As technology changes, computer design options change

For memory is small, dense instructions important

For high speed, pipelining important

CS/ECE 552 Lecture Notes: Chapter 3 38© 2000 by Mark D. Hill

Intel x-86 (IA-32)

Year CPU Comments

1978 8086 16-bit with 8-bit bus from 8080; selected for
IBM PC - golden handcuffs!

1980 8087 Floating Point Unit

1982 80286 24-bit addresses, memory-map, protection

1985 80386 32-bit registers and addresses, paging

1989 80486

1992 Pentium

1995 Pentium Pro few changes; 1997 MMX

CS/ECE 552 Lecture Notes: Chapter 3 39© 2000 by Mark D. Hill

Intel 80386 Registers & Memory

Registers

• 8 32-bit registers (but backward 16 & 8b: EAX, AX, AH, AL)

• 4 special registers: stack (ESP) & frame (EBP) pointers, ...

• Condition codes: overflow, sign, zero, parity, & carry

• Floating point uses a 8-element stack (re-used by MMX)

Memory

• Flat 32-bits or segmented (rarely used, but must support)

• Effective address =
base_reg + (index_reg x scaling_factor) + displacement

CS/ECE 552 Lecture Notes: Chapter 3 40© 2000 by Mark D. Hill

Intel 80386 ISA

Two register machine: src1/dst src2

• reg - reg, reg - immed, reg - mem, mem - reg, mem - imm

Examples

mov EAX, 23 # places 32b 2SC imm 23 in reg EAX

neg [EAX+4] # M[EAX+4] = -M[EAX+4]

faddp ST(7),ST # ST = ST + ST(7)

jle label # PC = label if Sign Flag or Zero Flag set

CS/ECE 552 Lecture Notes: Chapter 3 41© 2000 by Mark D. Hill

Intel 80386 ISA, cont.

Decoding nightmare

• instructions 1 to 17 bytes

• prefixes, postfixes

• crazy “formats” - e.g., register specifiers move around

• but key 32-b 386 instructions not terrible

• yet got to make all work correctly

CS/ECE 552 Lecture Notes: Chapter 3 42© 2000 by Mark D. Hill

Current Approach

Current technique in Pentium Pro

• Instruction decode logic translates into “RISCy Ops”

• Execution unit runs RISCy ops

+ Backward compatibility

– Complex decoding

+ Execution unit as fast as RISC

We work with MIPS to keep it simple and clean

Learn x86 on the job!

CS/ECE 552 Lecture Notes: Chapter 3 43© 2000 by Mark D. Hill

Complex Instructions

More powerful instructions not necessarily faster execution

E.g. - string copy

option 1: move with repeat prefix for memory to memory move

• special-purpose

option 2: use loads into register and then stores

• generic instructions

option 2 faster on the same machine!

CS/ECE 552 Lecture Notes: Chapter 3 44© 2000 by Mark D. Hill

Concluding Remarks

Simple and regular

• same length instructions, fields in same place

Small and fast

• Small number of registers

Compromises inevitable

• Pipelining (buffet concept) should not be hindered

Common case fast

