Back to Arithmetic

Before, we did

- Representation of integers
- Addition/Subtraction
- Logical ops

Forecast

- Integer Multiplication
- Integer Division
- Floating-point Numbers
- Floating-point Addition/Multiplication

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Integer Multiplication

Convert to binary

Use carry-save adders in a wallace tree

n bits times m bits = n+m bits (32 + 32 = 64)

Example next (Figure 4.27)

- Multiplicand = 2 = 0010
- Multiplier = 3 = 0011
- Product = 6 = 0110

Integer Multiplication

Recall decim	Recall decimal multiplication from grammar school (non negative)					
multiplicand	1000 base ten					
multiplier	1001 base ten					
partial	1000					
products	0000					
	0000					
	1000					
	1001000 base ten					

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Example (Fig 4.25)

Example (Fig. 4.26)

Integer Multiplication

Two optimizations

- observation: upper-half of 64 bits are all zero
- use 32-bit ALU and shift product right
- instead of multiplicand left (multiplier still goes right)
- observation: only half of product is used
- put multiplier in not-yet-used part of product

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Integer Multiplication

Combinational multiplier

1000 * 1001

1000

- 1 1000 AND bits to get partial products
- 0 0000 ADD PPs in tree to get product
- 0 0000 Use carry-save addition: 3 to 2 reduction every step
- 1 1000
 - 1001000

Integer Multiplication

What about negative multiplicand and/or multiplier

- grammar school
- Booth's encoding

Grammar school

- sign-prod = sign-mplicand XOR sign-mplier; negative = 0
- if multiplicand < 0 {multiplicand = -multiplicand; negative++}
- if multiplier < 0 {multiplier = -multiplier; negative++}
- product = multiplicand*multiplier
- if negative == 1 product = -product

Integer Multiplication

Booth encoding -- mind bending like carry-lookahead

Skipping over 9's in decimal - look for beginning and end of 9's

12345

<u>* 09990</u> = -10 + 10000

-123450 12345*10

+123450000 12345*10000

123326550

But in decimal only works for 9's - 1 less than base (10)

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Booth's Encoding

In binary

• works for 1's - 1 less than 2

• we already are fast on zeroes

•--

current bit	bit to right	info	
1	0	start 1's	-1
1	1	middle of 1's	0
0	1	end of 1's	+1
0	0	middle of 0's	0

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

10

Booth's Encoding

-2k	1k	512	256	128	64	32	16	8 4	42	10	
1	1	1	0	0	1	1	1	0	10	0 0)
0	0	-1	0	+1	0	0	-1	+1	-1 (0 0	0
	0		-2		+2		-1		+1		0
-20	48	+ 10	24 +	512	2 + 6	64 +	- 32	2+	16 ·	+ 4	
-1*512 + 1*128 + -1*16 + 1*8 + -1*4											
-2*256 + 2 *64 + -1*16 + 1*4											
all e	all equivalent										

Booth Encoding

1010 -> -6 8 bits = 11111010 -(-6) = 00000110							
0110 -> +6 Boothenc = +1 0 -1 - = +0-0							
11111010 *0 = 0							
1111010_*- = 00001100							
111010*0 = 0							
<u>11010</u> *+ = <u>11010000</u>							
11011100 = -36							

Booth Encoding

negative multiplier
1010 = -6
1110 = -2 booth enc 000-0
0000110_ = 00001100 = +12
$b * a_2 a_1 a_0 =$
• $(a_1-a_2)^*b^*2^2 + (a_0-a_1)^*b^*2^1 + (0-a_0)^*b^*2^0$
• -a ₂ *b*2 ² + (2*a ₁ -a ₁)*b*2 ¹ + (2*a ₀ -a ₀)*b*2 ⁰
• $[a_2^* - 2^2 + a_1^* 2^1 + a_0^* 2^0] !!$

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Redundant Representations

Normally

• $d_2^*b^2 + d_1^*b^1 + d_0^*b_0$; b base, d_i usually (0, 1, . . . base-1}

Booth Encoding

• b = 2, d_i = {-1, 0, +1}

Carry-Save addition

• b = 2, d_i = { 0, 1, 2, 3}

2-bit Booth Encoding

• b = 4, d_i = {-2, -1, 0, +1, +2}

```
© 2000 by Mark D. Hill
```

CS/ECE 552 Lecture Notes: Chapter 4

2-bit Booth Encoding

n-b	n-bit encoding retires n multiplier bits at a time											
Eg.	,											
1	1	1	0	0	1	1	1	0	1	00	"0"	
0	0	-1	0	+1	0	0	-1	+1	-1	0 0		 1 bit enc
	0		-2		+2		-1		+1	()	 2 bit enc

2-bit Booth Encoding

For each partial product, mux controlled by multiplier digits
-2 - 2'sC, shift left one bit
-1 - 2'sC
0
+1 pass through
+2 shift left one bit

15

13

Integer Division

divisor - 1000 dividend 1001010 - grammar school					
1000)1001010(1001 - quotient					
<u>1000</u>					
10					
101					
1010					
<u>1000</u>					
10 - rema	ainder				
© 2000 by Mark D. Hill	CS/ECE 552 Lecture Notes: Chapter 4				

Integer Division

But hardware can't inspect to see if divisor fits, so

Subtract

- if non-negative then set quotient to 1
- else set quotient to 0, add back the divisor (or "restore")

Figure

17

Can do multiplication-like optimizations

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Integer Division

Non-restoring division - a key optimization in division

Recall restoring division:

divisor 1000, 2'sC 1 . . . 11000

$\frac{\text{Integer Division}}{0010101}$ + 11000 -divisor*2² 11101 => < 0 +01000 +divisor*2² 00101 001010 next bit down +111000 -divisor*2² 000010 (-d*2² + d*2²) - d*2¹

19

© 2000 by Mark D. Hill

Integer Division

Now non-restoring					
0010101					
<u>+ 11000</u> -divisor*2 ²					
11101 => < 0					
111010 next bit down					
<u>+001000</u> +divisor*2 ¹					
000010 $(-d^{*}2^{2}+d^{*}2^{1}) = -d^{*}2^{1}$					

Integer Division

But quotient bits are $\{1, \overline{1}\}$ quotient bit = 1 if partial remainder is >= 0 (i.e., subtract) quotient bit = $\overline{1}$ if partial remainder is < 0 (i.e., add) convert the weird quotient into 2'sC for any 2'sC negative numbers: quotient bit = 1 if partial remainder and divisor are same sign quotient bit = $\overline{1}$ if partial remainder and divisor are opposite sign

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

21

CS/ECE 552 Lecture Notes: Chapter 4

22

SRT Division and Pentium Bug

Normalize so 1 <= dividend, divisor < 2

Use radix 4 for divisor

• base = 2

• get 2 bits of quotient per iteration

Use redundant quotient representation

• digits {-2, -1, 0, +1, +2} instead of {0,1,2,3}

Pentium Bug

partial-remainder = dividend

loop {

© 2000 by Mark D. Hill

- determine next quotient digit
- subtract quotient-digit*divisor from partial-remainder (CSA)
- shift over 2 bits (radix 4)

}

Pentium Bug

Determine next quotient digit

conceptually - a table-lookup into table[partial-remainder, divisor]

guess next 2 quotient bits

some part of the table is not "accessible"

so optimized as don't cares in PLA

But some of the don't cares (5) actually occur in practice!

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Pentium Bug

Incomplete testing did not expose,

- since the algorithm self-corrects
- as long as the partial-remainder is "in range"

incorrect quotient for some dividend, divisor pairs

1.14*10⁻¹⁰ fail on random

Max error in 5th significant digit,

• because you can't get out of range for many iterations

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

26

Pentium Bug

Analysis

- There are are actually much worse errors in Pentium
- Errata book (and other microprocessors)
- These can cause completely incorrect results
- People believe hardware is always perfect
- (for software you pay for their bugs!!)
- Pentium bug caught public attention
- and Intel handled poorly

Booth 2-bit Encoding

curr bits	bit to right	info	Ор
00	0	mid of 0's	0
00	1	end of 1's	+1
01	0	single 1	+1
01	1	end of 1's	+2
10	0	beg of 1's	-2
10	1	single 0	-1
11	0	beg of 1's	-1
11	1	mid of 1's	0

27

25

© 2000 by Mark D. Hill

Non-restoring Division

Final step may need correction if

- remainder and dividend opp signs, correction needed
- dividend, divisor same sign, remainder += D, quotient -=ulp
- dividend, divisor opp sign, emainder -= D, quotient +=ulp

convert wierd quotient to 2'sC : 1 is 1, $\overline{1}$ is 0

shift left by one bit

complement MSB

shift 1 into LSB

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Numbers

computer floating-point is similar except binary

- number is -1^s * f * 2^e (note base is not stored)
- IEEE 754 uses base 2
 - reduce relative error (wobble)
 - most significant bit is always 1, so don't store it

For IEEE FP, store s, e,f as S, E, F

- •SEF range bias n
- 2*10^{+/-38} 23 • 1 8 23 single-precision 127
- 2*10^{+/-308} 52 1023 • 1 11 52 double-precision

want to represent real numbers

But uncountably infinite

Recall scientific notation

- 3.15576 *10⁹ (#seconds in a century!)
- 3,155,760,000
- exponent says where the decimal point "float"

Recall normalization

- use 3.14*10¹⁰ NOT 0.314*10¹¹ or 31.4*10⁹
- MSD is [1,9] except for 0.0

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Numbers

usually

- \bullet s = S
- e = E bias
- $f = 1 + F/2^n$
- e.g., -1^s * (1.F) * 2^(E-1023)

Floating-Point Numbers

Exceptions

•SEF number

- •0 0 0 0
- 0 max 0 +inf
- 1 max 0 -inf
- x max !=0 NaN
- x 0 $!=0 \text{ denorm } f = 0 + F/2^n$

see book for table

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Addition

Like scientific notation $9.997 * 10^{2}$ + 4.631 * 10⁻¹ First step: align decimal points, second step: add $9.997 * 10^{2}$ + 0.004631 * 10²

10.001631 * 10²

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Addition

Third step: normalize the result

- often already normalized
- otherwise move only one digit

 $1.0001631 * 10^3$

Example presumes infinite precision; with FP must round

Figure

Floating-Point Subtraction

Subtraction similar

- when adding different signs
- subtracting same signs

35

33

Floating-Point Multiplication

Example:

• 3.0 * 10¹

• 5.0 * 10²

• algorithm: multiple mantissas, add exponents

- check exponent in bounds --> exception
- normalize (and round)

• set sign

Floating-Point Multiplication

Hardware: Figure Exponent: e+ = e1 + e2E+ = e+ + 1023 = E1 - 1023 + E2 - 1023 + 1023E+ = E1 + E2 - 1023-1023 = -(111111111) = 0000000000 + 1 = +1With 2'sC E+ = E1 + E2 + carryin!

 $\ensuremath{\textcircled{}^\circ}$ 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

38

Floating-Point Multiplication

Significand

23 or 52 bit non-negative integer multiplier

carry save adders in a wallace tree

a shifter to normalize

Floating-Point Division

E/ = E1 - E2 + 1023 = E1 - (E2 - 1) = E - (1'sC(E2))

For significand, use integer SRT with radix 4 or 16 (la Pentium)

Rounding

6-9 up

5 to even to make unbiased

1-4 down

0 unchanged

xxxx.1 . . . 1 .. up

xxxxx.10000 to even

xxx.0 1 ... down

xxx.000000000 unchanged

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Need infinite bits? No - hold least significant bits

• guard bits - used for normalization - one bit right of LSB

Rounding

- round bit main round bit one bit right of guard bit
- sticky logical OR of all less significant bits
- round sticky
- •11 round up
- 1 0 round even
- 0 1 round down
- 0 0 no round

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

42

Rounding

IEEE FP bounds error to 1/2 "units of the last place" ULP

Keeping error small and unbiased is important

• can accumulate after billions of operations

other rounding modes

Mixing small and large numbers in FP

 $(3.1415 \dots + 6 \ ^*10^{22}) - 6 \ ^*10^{22} = 3.1415 \dots + (6 \ ^*10^{22} - 6 \ ^*10^{22})$