Back to Arithmetic

Before, we did

- Representation of integers
- Addition/Subtraction
- Logical ops

Forecast

- Integer Multiplication
- Integer Division
- Floating-point Numbers
- Floating-point Addition/Multiplication
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Integer Multiplication

Convert to binary

Use carry-save adders in a wallace tree
n bits times m bits $=n+m$ bits $(32+32=64)$
Example next (Figure 4.27)

- Multiplicand =2 20010
- Multiplier = $3=0011$
- Product = $6=0110$

Integer Multiplication

Recall decimal multiplication from grammar school (non negative) multiplicand 1000 base ten
multiplier 1001 base ten
partial 1000
products 0000

1001000 base ten

Example (Fig 4.25)

Example (Fig. 4.26)

Integer Multiplication

Two optimizations

- observation: upper-half of 64 bits are all zero
- use 32-bit ALU and shift product right
- instead of multiplicand left (multiplier still goes right)
- observation: only half of product is used
- put multiplier in not-yet-used part of product

Integer Multiplication

What about negative multiplicand and/or multiplier

- grammar school
- Booth's encoding

Grammar school

- sign-prod $=$ sign-mplicand XOR sign-mplier; negative $=0$
- if multiplicand <0 \{multiplicand =-multiplicand; negative ++ \}
- if multiplier <0 \{multiplier = -multiplier; negative ++$\}$
- product = multiplicand*multiplier
- if negative == 1 product =-product

Integer Multiplication

Booth encoding -- mind bending like carry-lookahead
Skipping over 9's in decimal - look for beginning and end of 9's 12345

* $09990=-10+10000$
-123450 12345*10
+123450000 12345*10000
123326550
But in decimal only works for 9's - 1 less than base (10)
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Booth's Encoding

```
-2k 1k 51225612864 32 16 84210
1 1 1 0 0 0 1 1 1 0 1000
0 0-1 0 +1 0 0 -1 +1-1000
    0
-2048+1024+512+64+32+16+4
-1*512+1*128+-1*16 + 1*8 +-1*4
-2*256 + 2 *64 + -1*16 + 1*4
```

all equivalent

Booth's Encoding

In binary

- works for 1 's -1 less than 2
- we already are fast on zeroes

0 burrent bit	bit to right	info	
1	0	start 1's	-1
1	1	middle of 1's	0
0	1	end of 1's	+1
0	0	middle of 0's	0

© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Booth Encoding

```
1010 -> -6 8 bits = 11111010-(-6)=00000110
0110-> +6 Boothenc = +1 0-1-= +0-0
11111010 *0 = 0
1111010_ *- = 00001100
111010__ *0 = 0
11010__* + = 11010000
    11011100= -36
```


Booth Encoding

```
negative multiplier
\(1010=-6\)
\(1110=-2\) booth enc 000-0
0000110_ \(=00001100=+12\)
\(b^{*} a_{2} a_{1} a_{0}=\)
    - \(\left(a_{1}-a_{2}\right)^{*} b^{*} 2^{2}+\left(a_{0}-a_{1}\right)^{*} b^{*} 2^{1}+\left(0-a_{0}\right)^{*} b^{*} 2^{0}\)
    - \(-a_{2}{ }^{*} b^{*} 2^{2}+\left(2^{*} a_{1}-a_{1}\right)^{*} b^{*} 2^{1}+\left(2^{*} a_{0}-a_{0}\right)^{*} b^{*} 2^{0}\)
    - \(\left[a_{2}{ }^{*}-2^{2}+a_{1}{ }^{*} 2^{1}+a_{0}{ }^{*} 2^{0}\right]!!\)
```

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 4

2-bit Booth Encoding

n -bit encoding retires n multiplier bits at a time
Eg.,

Redundant Representations
Normally

- $d_{2}{ }^{*} b^{2}+d_{1}{ }^{*} b^{1}+d_{0}{ }^{*} b_{0}$; b base, d_{i} usually $(0,1, \ldots$ base- 1$\}$

Booth Encoding

- $b=2, d_{i}=\{-1,0,+1\}$

Carry-Save addition

- $b=2, d_{i}=\{0,1,2,3\}$

2-bit Booth Encoding

- $b=4, d_{i}=\{-2,-1,0,+1,+2\}$
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

2-bit Booth Encoding

For each partial product, mux controlled by multiplier digits
-2-2'sC, shift left one bit
-1-2'sC
0
+1 pass through
+2 shift left one bit

Integer Division
divisor - 1000 dividend 1001010 - grammar school

$1000) \overline{1001010(1001-\text { quotient }}$
10
101
1010
1000
10 - remainder
© 2000 by Mark D. Hill

Integer Division
Non-restoring division - a key optimization in division
Recall restoring division:
divisor 1000, 2'sC 1 . . . 11000

Integer Division
But hardware can't inspect to see if divisor fits, so
Subtract

- if non-negative then set quotient to 1
- else set quotient to 0 , add back the divisor (or "restore")

Figure
Can do multiplication-like optimizations
© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 4

Integer Division

0010101

+11000 -divisor*2 ${ }^{2}$
11101 => < 0
+01000 +divisor*2 ${ }^{2}$
00101
001010 next bit down
+111000 -divisor*2 ${ }^{2}$
$000010\left(-d^{*} 2^{2}+d^{*} 2^{2}\right)-d^{*} 2^{1}$
© 2000 by Mark D. Hill \quad CS/ECE 552 Lecture Notes: Chapter $4 \quad 20$

Integer Division

Now non-restoring
0010101
+11000 -divisor*2 2^{2}
$11101=><0$
111010 next bit down
+001000
$000010 \quad\left(-d^{*} 2^{2}+d^{*} 2^{1}\right)==-d^{*} 2^{1}$
© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 4
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Pentium Bug

partial-remainder $=$ dividend
loop \{

- determine next quotient digit
- subtract quotient-digit*divisor from partial-remainder (CSA)
- shift over 2 bits (radix 4)
\}

Pentium Bug

Determine next quotient digit
conceptually - a table-lookup into table[partial-remainder, divisor] guess next 2 quotient bits
some part of the table is not "accessible"
so optimized as don't cares in PLA

But some of the don't cares (5) actually occur in practice!

Pentium Bug

Analysis

- There are are actually much worse errors in Pentium
- Errata book (and other microprocessors)
- These can cause completely incorrect results
- People believe hardware is always perfect
- (for software you pay for their bugs!!)
- Pentium bug caught public attention
- and Intel handled poorly

Pentium Bug

Incomplete testing did not expose

- since the algorithm self-corrects
- as long as the partial-remainder is "in range"
incorrect quotient for some dividend, divisor pairs
$1.14^{*} 10^{-10}$ fail on random
Max error in 5th significant digit,
- because you can't get out of range for many iterations

© 2000 by Mark D. Hil

CS/ECE 552 Lecture Notes: Chapter 4

Booth 2-bit Encoding

curr bits	bit to right	info	Op
00	0	mid of 0's	0
00	1	end of 1's	+1
01	0	single 1	+1
01	1	end of 1's	+2
10	0	beg of 1's	-2
10	1	single 0	-1
11	0	beg of 1's	-1
11	1	mid of 1's	0

Non-restoring Division

Final step may need correction if

- remainder and dividend opp signs, correction needed
- dividend, divisor same sign, remainder += D, quotient -=ulp
- dividend, divisor opp sign, emainder -= D, quotient +=ulp
convert wierd quotient to 2 'sC : 1 is $1, \overline{1}$ is 0
shift left by one bit
complement MSB
shift 1 into LSB

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Numbers
computer floating-point is similar except binary

- number is $-1^{\mathrm{s} *} \mathrm{f}^{\text {* }} 2^{\mathrm{e}}$ (note base is not stored)
- IEEE 754 uses base 2
- reduce relative error (wobble)
- most significant bit is always 1 , so don't store it

For IEEE FP, store s, e,f as S, E, F

- S E F	range	n	bias
- 1823 single-precision	$2^{*} 10^{+/-38}$	23	127
- 11152 double-precision	$2^{*} 10^{+/-308}$	52	1023

Floating-Point Numbers

```
Exceptions
- S E F number
- 00000
-0 max 0 +inf
-1 max 0 -inf
-x max !=0 NaN
- \(x \quad 0 \quad!=0\) denorm \(f=0+F / 2^{n}\)
```

see book for table
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Addition
Third step: normalize the result

- often already normalized
- otherwise move only one digit
1.0001631 * 10^{3}

Example presumes infinite precision; with FP must round
Figure

Floating-Point Addition

Like scientific notation

$$
9.997 * 10^{2}
$$

$$
+4.631 * 10^{-1}
$$

First step: align decimal points, second step: add
$9.997 * 10^{2}$
$+0.004631 * 10^{2}$
10.001631 * 10^{2}
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Subtraction
Subtraction similar

- when adding different signs
- subtracting same signs

Floating-Point Multiplication
Example:

\[\)| • $3.0 * 10^{1}$ |
| :--- |
| • $5.0 * 10^{2}$ |
| • algorithm: multiple mantissas, add exponents |
| • check exponent in bounds --> exception |
| • normalize (and round) |
| • set sign |

\]

© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Multiplication

Significand

23 or 52 bit non-negative integer multiplier
carry save adders in a wallace tree
a shifter to normalize

Hardware: Figure
Exponent:
$\mathrm{e}+\mathrm{e} 1+\mathrm{e} 2$
$\mathrm{E}+=\mathrm{e}++1023=\mathrm{E} 1-1023+\mathrm{E} 2-1023+1023$
$\mathrm{E}+=\mathrm{E} 1+\mathrm{E} 2-1023$
$-1023=-(1111111111)=0000000000+1=+1$
With 2 'sC $\mathrm{E}+=\mathrm{E} 1+\mathrm{E} 2+$ carryin!
© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 4

Floating-Point Division
$\mathrm{E} /=\mathrm{E} 1-\mathrm{E} 2+1023=\mathrm{E} 1-(\mathrm{E} 2-1)=\mathrm{E}-(1$ 'sC(E2))
For significand, use integer SRT with radix 4 or 16 (la Pentium)

Rounding

6-9 up

5 to even to make unbiased
1-4 down
0 unchanged
xxxx. 1 . . 1 .. up
xxxxx. 10000 to even
xxx. 0 1 .. . down
xxx. 0000000000 unchanged
© 2000 by Mark D. Hill
CS/ECE 552 Lecture Notes: Chapter 4

Rounding

Need infinite bits? No - hold least significant bits

- guard bits - used for normalization - one bit right of LSB
- round bit - main round bit - one bit right of guard bit
- sticky - logical OR of all less significant bits
- round sticky
- 11 round up
- 10 round even
- 01 round down
- 00 no round

Rounding

IEEE FP bounds error to $1 / 2$ "units of the last place" ULP
Keeping error small and unbiased is important

- can accumulate after billions of operations
other rounding modes
Mixing small and large numbers in FP
$\left(3.1415 \ldots+6 * 10^{22}\right)-6 * 10^{22}!=3.1415 \ldots+\left(6 * 10^{22}-6 * 10^{22}\right)$

