
CS/ECE 552 Lecture Notes: Chapter 5 1© 2000 by Mark D. Hill

Processor Implementation

Forecast -- heart of course -- key to project

• Sequential logic design review

• Clocking methodology

• Datapath -- 1 CPI

• single instruction, 2’s complement, unsigned

• Control

• Multiple cycle implementation

• Microprogramming

• Exceptions

CS/ECE 552 Lecture Notes: Chapter 5 2© 2000 by Mark D. Hill

Review Sequential Logic

Logic is combinational if output is solely function of inputs

e.g., ALU of previous lecture

Logic is sequential or “has state” if output function of

• past and current inputs

• past inputs “remembered” in “state”

• but no magic!

CS/ECE 552 Lecture Notes: Chapter 5 3© 2000 by Mark D. Hill

Review Sequential Logic

E.g., D latch

Clock high Q = D, Q = D after some min to max propagate delay

clock low Q, Q remain unchanged

sensitive to clock level

Q

C

D

_
Q

CS/ECE 552 Lecture Notes: Chapter 5 4© 2000 by Mark D. Hill

Review Sequential Logic

E.g., D flip-flop

While clock high, D flows into 1st latch, but not 2nd

There Q retains old value

Remebmer D at falling edges and propagates through 2nd latch

QQ

_
Q

Q

_
Q

D
latch

D

C

D
latch

DD

C

C



CS/ECE 552 Lecture Notes: Chapter 5 5© 2000 by Mark D. Hill

Review Sequential Logic

Can build

Why does this fail for latch?

D FF  +1

CS/ECE 552 Lecture Notes: Chapter 5 6© 2000 by Mark D. Hill

Clocking Methodology

Motivation

• Design datapath/control without thinking about clocks

• Use convention called clocking methodology

• restricts design freedom

• hides complexity

CS/ECE 552 Lecture Notes: Chapter 5 7© 2000 by Mark D. Hill

Our Methodology

Only Flip-flops

All on same edge (e.q., falling)

All with same clock (omit from pictures)

All logic finishes in one clock cycle

FFs Logic FFsLogic

CS/ECE 552 Lecture Notes: Chapter 5 8© 2000 by Mark D. Hill

Our Methodology, cont.

Do *NOT* use qualified clocks:I

CorrectI

state

write AND clock

new current

state
current

new

write

0

1



CS/ECE 552 Lecture Notes: Chapter 5 9© 2000 by Mark D. Hill

Datapath - 1 CPI

Assumption: Get whole instruction done in one long cycle

Instructions: add, sub, and, or, slt, lw, sw, & beq

To do

• For single instruction

• Put it together

CS/ECE 552 Lecture Notes: Chapter 5 10© 2000 by Mark D. Hill

Fetch Instructions

Fetch instruction,
then increment PC

Assumes

• PC updated every cycle

• no branch or jumps

after this instruction,
do different things

PC

Instruction
memory

Read
address

Instruction

4

Add

CS/ECE 552 Lecture Notes: Chapter 5 11© 2000 by Mark D. Hill

And $1, $2, $3     # $1 destination

Use R-format

opcode rs rt rd shamt funct

     6      5  5  5     5       6

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3

ALU Instructions

CS/ECE 552 Lecture Notes: Chapter 5 12© 2000 by Mark D. Hill

Load/Store Instructions

xw $1, immed($2)   # $1  <-> M[SE(immed)+$2]

Use I-format

opcode  rs rt immed

   6         5  5    16

struction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3



CS/ECE 552 Lecture Notes: Chapter 5 13© 2000 by Mark D. Hill

Branch Instructions

beq $1, $2, addr   # if ($1 == $2) PC = PC + addr<<2

Actually

• newPC = PC + 4

• target = newPC + addr<<2  # in MIPS offset from newPC

• if ($1-$2 == 0)

•    PC = target

• else

•    PC = newPC

CS/ECE 552 Lecture Notes: Chapter 5 14© 2000 by Mark D. Hill

Branch Instructions

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

CS/ECE 552 Lecture Notes: Chapter 5 15© 2000 by Mark D. Hill

All Together

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add


