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Processor Implementation

Forecast -- heart of course -- key to project

• Sequential logic design review

• Clocking methodology

• Datapath -- 1 CPI

• single instruction, 2’s complement, unsigned

• Control

• Multiple cycle implementation

• Microprogramming

• Exceptions
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Review Sequential Logic

Logic is combinational if output is solely function of inputs

e.g., ALU of previous lecture

Logic is sequential or “has state” if output function of

• past and current inputs

• past inputs “remembered” in “state”

• but no magic!
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Review Sequential Logic

E.g., D latch

Clock high Q = D, Q = D after some min to max propagate delay

clock low Q, Q remain unchanged

sensitive to clock level
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Review Sequential Logic

E.g., D flip-flop

While clock high, D flows into 1st latch, but not 2nd

There Q retains old value

Remebmer D at falling edges and propagates through 2nd latch
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Review Sequential Logic

Can build

Why does this fail for latch?

D FF  +1
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Clocking Methodology

Motivation

• Design datapath/control without thinking about clocks

• Use convention called clocking methodology

• restricts design freedom

• hides complexity
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Our Methodology

Only Flip-flops

All on same edge (e.q., falling)

All with same clock (omit from pictures)

All logic finishes in one clock cycle

FFs Logic FFsLogic
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Our Methodology, cont.

Do *NOT* use qualified clocks:I

CorrectI
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Datapath - 1 CPI

Assumption: Get whole instruction done in one long cycle

Instructions: add, sub, and, or, slt, lw, sw, & beq

To do

• For single instruction

• Put it together

CS/ECE 552 Lecture Notes: Chapter 5 10© 2000 by Mark D. Hill

Fetch Instructions

Fetch instruction,
then increment PC

Assumes

• PC updated every cycle

• no branch or jumps

after this instruction,
do different things
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And $1, $2, $3     # $1 destination

Use R-format

opcode rs rt rd shamt funct

     6      5  5  5     5       6

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3

ALU Instructions
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Load/Store Instructions

xw $1, immed($2)   # $1  <-> M[SE(immed)+$2]

Use I-format

opcode  rs rt immed

   6         5  5    16

struction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3
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Branch Instructions

beq $1, $2, addr   # if ($1 == $2) PC = PC + addr<<2

Actually

• newPC = PC + 4

• target = newPC + addr<<2  # in MIPS offset from newPC

• if ($1-$2 == 0)

•    PC = target

• else

•    PC = newPC
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Branch Instructions

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3
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All Together

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result
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Shift
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4
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u
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ALU operation3

RegWrite
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