Processor Implementation Review Sequential Logic

Forecast -- heart of course -- key to project Logic is combinational if output is solely function of inputs
« Sequential logic design review e.g., ALU of previous lecture
* Clocking methodology

« Datapath -- 1 CPI
* single instruction, 2's complement, unsigned

Logic is sequential or “has state” if output function of
* past and current inputs
* past inputs “remembered” in “state”

* Control)
_ _ . * but no magic!

* Multiple cycle implementation

e Microprogramming

* Exceptions

Review Sequential Logic Review Sequential Logic
E.g., D latch E.g., D flip-flop
cH D D 5 Q D 5 Q Q
- Q latch latch _
c Q

D —

. _ _ While clock high, D flows into 15! latch, but not 2"
Clock high Q = D, Q = D after some min to max propagate delay

o There Q retains old value
clock low Q, Q remain unchanged

; nd
sensitive to clock level Remebmer D at falling edges and propagates through 2" latch

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 3 © 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Review Sequential Logic Clocking Methodology

Can build Motivation

» Design datapath/control without thinking about clocks
DFF — * Use convention called clocking methodology
* restricts design freedom

* hides complexity

Y

Why does this fail for latch?

Our Methodology Our Methodology, cont.
Only Flip-flops Do *NOT* use qualified clocks:l
All d .q., falli —~aew curr:m/e
on same edge (e.q., falling) _state |

All with same clock (omit from pictures) /\
write AND clock

All logic finishes in one clock cycle
Correctl

FF - i FF t
t }

t

write

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 7 © 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Datapath - 1 CPI

Assumption: Get whole instruction done in one long cycle

Instructions: add, sub, and, or, slt, lw, sw, & beq
To do
« For single instruction

 Put it together

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

ALU Instructions

And $1, $2, $3 # $1 destination

Read
register 1 Read
data 1
) Read
Instruction register 2
— " Registers
Write
register Read
: data 2
Write
data

Use R-format
opcode rs rt rd shamt funct

6 555 5 6

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Fetch Instructions

Fetch instruction,
then increment PC

Assumes

» PC updated every cycle

* no branch or jumps

after this instruction,
do different things

Add

Read
pC address

Instruction
memory

INSHrUCHON [r—-

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 5

Load/Store Instructions

xw $1, immed($2) # $1 <-> M[SE(immed)+$2]

Use |-format

opcode rs rtimmed

6 55

Fee?sdler 1
9 Read
data 1
| Read
struction register 2
i . Registers
——| Wnte[Address Rée;g o
register Read
i data 2
Write
[data Data
. memory
Write
data
16

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 5

Branch Instructions Branch Instructions

beq $1, $2, addr # if ($1 == $2) PC = PC + addr<<2
PC + 4 from instruction datapath =——{
ACtua”y Add Sum Branch target
*newPC=PC+4 @
« target = newPC + addr<<2 # in MIPS offset from newPC ond
M. register 1 Read
. |f ($1‘$2 == O) Read data 1
register 2 To branch
. PC _ tar et Wiite Registers ALU Zero control logic
- g register Read
: data 2
. else dete
* PC=newPC

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 13 © 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 14

All Together

xcZ

Add_AL

result
-’

Registers
d Read
- Rdeél register 1 Read
address Read data 1
register 2
Instruction
s Read Address I?jead -y
Instruction register data 2 in M
memory —] \dl\lartwée Data u
Write memory
data

Sign
extend

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 15

