Microprogramming

Alternative way of specifying control
FSM

« State -- bubble

« control signals in bubble

* next state given by signals on arc

* not a great language to specify when things are complex

Treat as a programming problem

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Microprogramming

Datapath remains the same
Only control is specified differently but does the same

Each cycle specify required control signal via microprogram field

label | alu | srcl src2 reg memory | pcwrite next?
fetch | add| pc 4 read pc alu alu +1
add | pc | extshft read dispatch|1
meml | add A extend dispatch 2
w2 read alu +1
write mdr fetch

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

FSM (left) & Microprogramming (right)

nputs from instruction
register opcode field

Inputs from instruction
register opcode field

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Potential Benefits of Microprogramming

More disciplined control logic - easier to debug

Enables family of machines with same ISA (IBM 360/370)
Enables more complex instruction set

Writable control-store allows in-the-field fixes

But in the 1990s:

CAD tools and PLAs offer similar discipline

Caches make memory almost as fast as control store

Complex ISA - hardwired+micro-ops (e.g., Pentium Pro)

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

State of the Art

Specify control
 FSM - does not scale

* microprogram - works

« vhdl/verilog - preferred

Implement control
» random logic - only if CAD tools generate
* PLASs - mostly generated by CAD tools

 Control store + update - why accept this contraint?

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

State of the Art

Specify control in verilog/vhdl
CAD compile to PLA, but could used ROM or RAM

Microprogramming implementation seems dead
» because it unnecessarily constrains CAD'’s targets

But what if technology makes control store faster than caches?

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Horizontal vs. Vertical microcode

Horizontal
» fewer and wider micro-instructions

* less encoding

* larger control store - may waste space (control lines)

Vertical
e more and narrower micro-instructions

 dense encoding

« smaller control store - but may need more steps

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Exceptions: Background

What happens:
* instruction fetch page fault

* illegal opcode

* privileged opcode

« arithmetic overflow

* data page fault

* I/O device statuc change

» power-on/reset

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Exceptions: Background

For some, we could test for the condition
 arithmetic overflow

* 1/O device ready

But most tests for other conditions uselessly say “no”

Solution: Generate “surprise procedure calls” called exception

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 9

Exceptions: Big Picture

Interrupt (asynchronous) or trap (synchronous) triggers exception
Hardware handles initial reaction

Then invokes a software exception handler

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 10

Exceptions: Hardware

* Sets state giving cause of exception

* (MIPS: in exception_code field of Cause register -
* a coprocessor 0 register)

» Changes to Kernel mode for dangerous work ahead
* Disables interrupts (to prevent infinite looping)

* (MIPS: both the above in Status register -
 another coprocessor 0 register)

* saves current PC (MIPS: exception PC (EPC)
* jumps to specific address (MIPS: PC = 0x80000080)
* (like a surprise jal - so can't clobber $31)

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 11

Exceptions: Software

» Exception handler (MIPS: .ktext beginning at 0x80000080)
* Set flag to detect incorrect entry -exception while in handler
« Save some registers

* Find exception type (MIPS: exception_code in Cause reg)
* E.g., I/O interrupt or syscall

» Jump to specific exception handler ...

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5 12

Exceptions: Software, cont.

» Handle specific exception

« Jump to clean-up to resume user program
* restore registers

» Reset flag that detects incorrect entry

» Atomically
* restore previous mode
 enable interrupts
* jump back to program (using EPC)

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Implementing Exceptions

13

We worry only about hardware, not software handler

IntCause
» 0 undef instruction

» 1 arithmetic overflow

Changes to the datapath

New states in FSM to deal with exceptions

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

14

FSM with Exceptions (Fig. 5.50)

o fetet Instruction decode/
Instruction fetch Register fetch

MemRead
ALUSICA =0
lorD =0

ALUSIcA =0
ALUSIcB = 11
ALUOp = 00

Start

Memory address

computation completion

ALUSrcA =1

ALUSICA = 1 ALUSICA =1 ALUSTCB = 00 oW
ALUSICB = 00 ALUSICB = 00 ALUOp =01 pcs Cwrite 0
ALUOp =00 ALUOp = 10 PCWriteCond ource =

PCSource =01,

Memory

Memory

geeess aceess IntCause = 1 IntCause =0 ~
CauseWrite 0 CauseWrite N
RegDst =1 ALUSIcA=0 ALUSIcA=0 \
MemRead MemWwrite RegWrite ALUSICB = 01 ALUSIcB = 01

lorD =1 lorD =1 MemtoReg = 0 ALUOp = 01 ALUOp =01 |
EPCWrite EPCWrite /
PCWrite PCWrite

PCSource = 11, PCSource = 1. P 4

Write-back step

RegWrite
MemtoReg = 1
RegDst =0

© 2000 by Mark D. Hil CSIECE 552 Lecture Notes: Chapter 5 15
Implementing Exceptions
New arcs in the FSM just like regular arcs
FSM more complex if must add many arcs
Critical path may be worsened
Alternative: vectored interrupts
* PC = base + f(Cause)
* e.g., PC = 0x80 + IntCause << 7 # 32 instructions
+ faster
— more hardware, more space

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 5

Review

Type Control Datapath Time (CPI, cycle time)
Single- | comb+end| No reuse 1 cycle, (imem + reg +
cycle update ALU + dmem)
Multi- comb + Reuse [3,5] cycles, Max(imem,
cycle | FSM update reg, ALU, dmem)
We ? ? ~1 cycle, Max(imem , reg
want ALU, dmem)

We will use pipelining (lunch buffet!) to achieve last row

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 5

17

