
CS/ECE 552 Lecture Notes: Chapter 5 1© 2000 by Mark D. Hill

Microprogramming

Alternative way of specifying control

FSM

• State -- bubble

• control signals in bubble

• next state given by signals on arc

• not a great language to specify when things are complex

Treat as a programming problem

CS/ECE 552 Lecture Notes: Chapter 5 2© 2000 by Mark D. Hill

Microprogramming

Datapath remains the same

Only control is specified differently but does the same

Each cycle specify required control signal via microprogram field

label alu src1 src2 reg memory pcwrite next?

fetch add pc 4 read pc alu alu +1

add pc extshft read dispatch 1

mem1 add A extend dispatch 2

lw2 read alu +1

write mdr fetch

CS/ECE 552 Lecture Notes: Chapter 5 3© 2000 by Mark D. Hill

FSM (left) & Microprogramming (right)

Datapath control outputs

State registerI nputs from instruction
register opcode field

Outputs

Combinational
control logic

Inputs

Next state

Microprogram counter

Address select logic

Adder

1

Input

Datapat h
control
outputs

Microcode
storage

Inputs from instruction
register opcode field

Outputs

Sequencing
control

CS/ECE 552 Lecture Notes: Chapter 5 4© 2000 by Mark D. Hill

Potential Benefits of Microprogramming

More disciplined control logic - easier to debug

Enables family of machines with same ISA (IBM 360/370)

Enables more complex instruction set

Writable control-store allows in-the-field fixes

But in the 1990s:

CAD tools and PLAs offer similar discipline

Caches make memory almost as fast as control store

Complex ISA - hardwired+micro-ops (e.g., Pentium Pro)

CS/ECE 552 Lecture Notes: Chapter 5 5© 2000 by Mark D. Hill

State of the Art

Specify control

• FSM - does not scale

• microprogram - works

• vhdl/verilog - preferred

Implement control

• random logic - only if CAD tools generate

• PLAs - mostly generated by CAD tools

• Control store + update - why accept this contraint?

CS/ECE 552 Lecture Notes: Chapter 5 6© 2000 by Mark D. Hill

State of the Art

Specify control in verilog/vhdl

CAD compile to PLA, but could used ROM or RAM

Microprogramming implementation seems dead

• because it unnecessarily constrains CAD’s targets

But what if technology makes control store faster than caches?

CS/ECE 552 Lecture Notes: Chapter 5 7© 2000 by Mark D. Hill

Horizontal vs. Vertical microcode

Horizontal

• fewer and wider micro-instructions

• less encoding

• larger control store - may waste space (control lines)

Vertical

• more and narrower micro-instructions

• dense encoding

• smaller control store - but may need more steps

CS/ECE 552 Lecture Notes: Chapter 5 8© 2000 by Mark D. Hill

Exceptions: Background

What happens:

• instruction fetch page fault

• illegal opcode

• privileged opcode

• arithmetic overflow

• data page fault

• I/O device statuc change

• power-on/reset

CS/ECE 552 Lecture Notes: Chapter 5 9© 2000 by Mark D. Hill

Exceptions: Background

For some, we could test for the condition

• arithmetic overflow

• I/O device ready

But most tests for other conditions uselessly say “no”

Solution: Generate “surprise procedure calls” called exception

CS/ECE 552 Lecture Notes: Chapter 5 10© 2000 by Mark D. Hill

Exceptions: Big Picture

Interrupt (asynchronous) or trap (synchronous) triggers exception

Hardware handles initial reaction

Then invokes a software exception handler

CS/ECE 552 Lecture Notes: Chapter 5 11© 2000 by Mark D. Hill

Exceptions: Hardware

• Sets state giving cause of exception

• (MIPS: in exception_code field of Cause register -

• a coprocessor 0 register)

• Changes to Kernel mode for dangerous work ahead

• Disables interrupts (to prevent infinite looping)

• (MIPS: both the above in Status register -

• another coprocessor 0 register)

• saves current PC (MIPS: exception PC (EPC)

• jumps to specific address (MIPS: PC = 0x80000080)

• (like a surprise jal - so can’t clobber $31)

CS/ECE 552 Lecture Notes: Chapter 5 12© 2000 by Mark D. Hill

Exceptions: Software

• Exception handler (MIPS: .ktext beginning at 0x80000080)

• Set flag to detect incorrect entry -exception while in handler

• Save some registers

• Find exception type (MIPS: exception_code in Cause reg)

• E.g., I/O interrupt or syscall

• Jump to specific exception handler ...

CS/ECE 552 Lecture Notes: Chapter 5 13© 2000 by Mark D. Hill

Exceptions: Software, cont.

• Handle specific exception

• Jump to clean-up to resume user program

• restore registers

• Reset flag that detects incorrect entry

• Atomically

• restore previous mode

• enable interrupts

• jump back to program (using EPC)

CS/ECE 552 Lecture Notes: Chapter 5 14© 2000 by Mark D. Hill

Implementing Exceptions

We worry only about hardware, not software handler

IntCause

• 0 undef instruction

• 1 arithmetic overflow

Changes to the datapath

New states in FSM to deal with exceptions

CS/ECE 552 Lecture Notes: Chapter 5 15© 2000 by Mark D. Hill

FSM with Exceptions (Fig. 5.50)

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

 (Op = 'LW') or (O
p = 'SW') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

 =
 'J

')

 (O
p = 'SW

')

(O
p

 =
 'L

W
')

4

0
1

9862

7 11 1053

Start

 (O
p = other)

Overflow

Overflow

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

IntCause = 0
CauseWrite

ALUSrcA = 0
ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

IntCause = 1
CauseWrite

PCWrite
PCSource = 10

CS/ECE 552 Lecture Notes: Chapter 5 16© 2000 by Mark D. Hill

Implementing Exceptions

New arcs in the FSM just like regular arcs

FSM more complex if must add many arcs

Critical path may be worsened

Alternative: vectored interrupts

• PC = base + f(Cause)

• e.g., PC = 0x80 + IntCause << 7 # 32 instructions

+ faster

– more hardware, more space

CS/ECE 552 Lecture Notes: Chapter 5 17© 2000 by Mark D. Hill

Review

We will use pipelining (lunch buffet!) to achieve last row

Type Control Datapath Time (CPI, cycle time)

Single-
cycle

comb + end
update

No reuse 1 cycle, (imem + reg +
ALU + dmem)

Multi-
cycle

comb +
FSM update

Reuse [3,5] cycles, Max(imem,
reg, ALU, dmem)

We
want

? ? ~1 cycle, Max(imem , reg,
ALU, dmem)

