
CS/ECE 552 Lecture Notes: Chapter 6 1© 2000 by Mark D. Hill

Pipelining

Forecast

• Big Picture

• Datapath

• Control

• Data Hazards

• Stalls

• Forwarding

• Control Hazards

• Exceptions

CS/ECE 552 Lecture Notes: Chapter 6 2© 2000 by Mark D. Hill

Motivation

Want to minimize:

• Time = Instructions/prog x CPI x Cycle time = P x ? x ?

Single cycle implementation:

• CPI = 1

• Cycle=imem+reg_rd+alu+dmem+reg_wr+muxes & control

• = 500 + 250 + 500 + 500 + 250 + 0 + 0 = 2000 ps = 2 ns

• Time/prog = P * 2 ns

CS/ECE 552 Lecture Notes: Chapter 6 3© 2000 by Mark D. Hill

Motivation

Multicycle implementation:

• CPI = 3, 4, 5

• Cycle=Max(memory, registers, ALU, muxes&control)

• = max(500, 250, 500) = 500 ps

• Time/prog = P * 4 * 500 = P * 2000 ps = P * 2 ns

Would like:

• CPI = 1 + hazards

• Cycle = 500 ps + overheads

• In reality, ~3x improvement

CS/ECE 552 Lecture Notes: Chapter 6 4© 2000 by Mark D. Hill

Big Picture

Multicycle implementation:

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

i F D X M W

i+1 F D X

i+2 F D X M

i+3 F

i+4

Cycles

Instructions

CS/ECE 552 Lecture Notes: Chapter 6 5© 2000 by Mark D. Hill

Big Picture

Instruction Latency = 5 cycles

Instruction Throughput = 1/5 instructions per cycle

CPI = 5 cycles per instruction

 Pipelining: process instructions like a lunch buffet!

 ALL microprocessors today employ pipelining for speed

 E.g., Intel PentiumIII and Compaq Alpha 21264

CS/ECE 552 Lecture Notes: Chapter 6 6© 2000 by Mark D. Hill

Big Picture

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

i F D X M W

i+1 F D X M W

i+2 F D X M W

i+3 F D X M W

i+4 F D X M W

Cycles

Instructions

CS/ECE 552 Lecture Notes: Chapter 6 7© 2000 by Mark D. Hill

Big Picture

Instruction latency = 5 cycles - no change

Instruction throughput = 1 instruction per cycle

CPI = 1 cycle per instruction

CPI = cycle between instruction completion = 1!

CS/ECE 552 Lecture Notes: Chapter 6 8© 2000 by Mark D. Hill

Big Picture

But

• datapath? note: five instructions in datapath in cycle 5

• control? must be generated by multiple instructions

• instructions may have data and control flow dependences

CS/ECE 552 Lecture Notes: Chapter 6 9© 2000 by Mark D. Hill

Datapath (Fig. 6.11)

IM Reg DM RegALU

IM Reg DM RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Time (in clock cycles)

lw $2, 200($0)

lw $3, 300($0)

Program
execution
order
(in instructions)

lw $1, 100($0) IM Reg DM RegALU

CS/ECE 552 Lecture Notes: Chapter 6 10© 2000 by Mark D. Hill

Datapath (Fig. 6.10)

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write ba c

CS/ECE 552 Lecture Notes: Chapter 6 11© 2000 by Mark D. Hill

Big Picture

Control

• Set by five different instructions

• Divide and conquer: carry IR down the pipeline

MIPS ISA requires the appearance of sequential execution

CS/ECE 552 Lecture Notes: Chapter 6 12© 2000 by Mark D. Hill

Data Dependence

One instruction produces a value used by a later instruction

E.g.,

• add $1, - , -

• sub -, $4, -

1 2 3 4 5 6 7 8 9

i F D X M W*

i+1 F D* X M W

CS/ECE 552 Lecture Notes: Chapter 6 13© 2000 by Mark D. Hill

Data Dependence

Simple solution : Stall the pipeline

E.g.,

• add $1, - , -

• sub -, $4, -

But CPI > 1, we will do better using “register forwarding”

1 2 3 4 5 6 7 8 9

add F D X M W*

sub F D* X M W

CS/ECE 552 Lecture Notes: Chapter 6 14© 2000 by Mark D. Hill

Control Dependence

One instruction affects which instruction will execute next

E.g., bne, j

• sw $4, 0($5)

• bne $2, $3, loop

• sub -, - , -

1 2 3 4 5 6 7 8 9

sw F D X M W

bne F D X* M W

sub F D X M W

CS/ECE 552 Lecture Notes: Chapter 6 15© 2000 by Mark D. Hill

Control Dependence

• sw $4, 0($5)

• bne $2, $3, loop

• sub -, - , -

CPI > 1, we will do better

1 2 3 4 5 6 7 8 9

sw F D X M W

bne F D X* M W

?? F D X M W

CS/ECE 552 Lecture Notes: Chapter 6 16© 2000 by Mark D. Hill

Pipelined Datapath

Single-cycle datapath (Recall Fig. 6.10)

Pipelined execution

• assume each instruction has itw own datapath (Fig. 6.11)

• but each instruction uses different part in every cycle

• multiplex all on one datapath

• latch to separate cycles (as in multicycle) and instructions!

Ignore data and control flow dependences for now

• data hazards

• control flow hazards

CS/ECE 552 Lecture Notes: Chapter 6 17© 2000 by Mark D. Hill

Pipelined Datapath (Fig. 6.12)

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

CS/ECE 552 Lecture Notes: Chapter 6 18© 2000 by Mark D. Hill

Pipelined Datapath

Instruction flow

• add and load

• write of registers

• pass register specifiers

Any info needed by a later stage will be passed down

• store value through EX

CS/ECE 552 Lecture Notes: Chapter 6 19© 2000 by Mark D. Hill

Pipelined Control

IF and ID

• none

EX

• ALUop, ALUsrc, Regdst

MEM

• Branch MemRead, MemWrite

WB

• MemtoReg, RegWrite

CS/ECE 552 Lecture Notes: Chapter 6 20© 2000 by Mark D. Hill

Figure 6.25

PC

Instruction
memory

Address

In
s
tr

u
c
ti
o

n

Instruction
[20–16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction
[15–0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15–11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift

left 2

ALU
result

ALU

Zero

Add

0

1

M
u
x

0

1

M
u
x

CS/ECE 552 Lecture Notes: Chapter 6 21© 2000 by Mark D. Hill

Figure 6.29

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

CS/ECE 552 Lecture Notes: Chapter 6 22© 2000 by Mark D. Hill

Figure 6.30

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address

Data
memory

Address

CS/ECE 552 Lecture Notes: Chapter 6 23© 2000 by Mark D. Hill

Pipelined Control

But controlled by different instructions

Decode instructions and pass the signals down the pipe

Control sequencing is embedded in the pipeline

CS/ECE 552 Lecture Notes: Chapter 6 24© 2000 by Mark D. Hill

Pipelining

Not too complex yet

• data hazards

• control hazards

• exceptions

CS/ECE 552 Lecture Notes: Chapter 6 25© 2000 by Mark D. Hill

Data Hazards

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CS/ECE 552 Lecture Notes: Chapter 6 26© 2000 by Mark D. Hill

Data Hazards

Must first detect hazards

ID/EX.WriteRegister = IF/ID.ReadRegister1

ID/EX.WriteRegister = IF/ID.ReadRegister2

EX/MEM.WriteRegister = IF/ID.ReadRegister1

EX/MEM.WriteRegister = IF/ID.ReadRegister2

MEM/WB.WriteRegister = IF/ID.ReadRegister1

MEM/WB.WriteRegister = IF/ID.ReadRegister2

CS/ECE 552 Lecture Notes: Chapter 6 27© 2000 by Mark D. Hill

Data Hazards

Not all hazards because some

• WriteRegister not used e.g., sw

• ReadRegister not used e.g., addi, jump

• Do something only if necessary

CS/ECE 552 Lecture Notes: Chapter 6 28© 2000 by Mark D. Hill

Data Hazards

Hazard detection unit

• several 5-bit (or 6-bit) comparators

Response? Stall pipeline

• Instructions in IF and ID stay

• IF/ID pipeline latch not updated

• send “nop” down pipeline - called a “bubble”

• PcWrite, IF/IDWrite and nop mux

CS/ECE 552 Lecture Notes: Chapter 6 29© 2000 by Mark D. Hill

Register Forwarding (Figure 6.38)

R
e

g
is

te
rs

M u x
M u x

A
L

U

ID
/E

X
M

E
M

/W
B

D
a

ta
m

e
m

o
ry

M u x

F
o

rw
a

rd
in

g
u

n
it

E
X

/M
E

M

b
.
W

it
h

 f
o

rw
a

rd
in

g

F
o

rw
a

rd
B

R
d

E
X

/M
E

M
.R

e
g
is

te
rR

d

M
E

M
/W

B
.R

e
g

is
te

rR
d

R
t

R
t

R
s

F
o

rw
a

rd
A

M u x

A
L

U

ID
/E

X
M

E
M

/W
B

D
a

ta
m

e
m

o
ry

E
X

/M
E

M

a
.
N

o
 f
o

rw
a

rd
in

g

R
e

g
is

te
rs

M u x
CS/ECE 552 Lecture Notes: Chapter 6 30© 2000 by Mark D. Hill

Data Hazard

A better response - forwarding

all of the above made sure reg read after reg write

Instead of stalling

• use mux to select forwarded value rather than reg value

• control mux with hazard detection logic

CS/ECE 552 Lecture Notes: Chapter 6 31© 2000 by Mark D. Hill

Data Hazards

Load followed by a use

Can’t avoid a stall

Stall one cycle and the forward

CS/ECE 552 Lecture Notes: Chapter 6 32© 2000 by Mark D. Hill

Data Hazards

Other options

Disallow hazardous sequences

• compiler will never generate them

• assembly programmers will not use them

• If used, result is random

CS/ECE 552 Lecture Notes: Chapter 6 33© 2000 by Mark D. Hill

Control Flow Hazards

Control flow instructions

• branches, jumps, jals, returns

• can’t fetch until branch outcome known

• too late for next IF

CS/ECE 552 Lecture Notes: Chapter 6 34© 2000 by Mark D. Hill

Control Flow Hazards

What to do?

• Always stall

• easy to implement

• performs poorly

• 1/6th instructions is a branch, each branch takes 3 cycle

• what is the CPI?

CS/ECE 552 Lecture Notes: Chapter 6 35© 2000 by Mark D. Hill

Control Flow Hazards

Predict branch not taken

let sequential instructions go down the pipeline

must kill later instructions if incorrect

must stop memory accesses and reg writes

• including loads (why?)

CS/ECE 552 Lecture Notes: Chapter 6 36© 2000 by Mark D. Hill

Control Flow Hazards

Late flush of instructions on misprediction

Complex

CS/ECE 552 Lecture Notes: Chapter 6 37© 2000 by Mark D. Hill

Control Flow Hazards

Even better but more complex

• predict taken

• predict both

• dynamically adapt to program branch patters

• significant fraction of chip real estate

• PentiumIII

• Alpha 21264

• current topic of research

CS/ECE 552 Lecture Notes: Chapter 6 38© 2000 by Mark D. Hill

Control Flow Hazards

Another option: delayed branches

• always execute following instruction

• delay slot

• put useful instruction, nop otherwise

losing popularity

CS/ECE 552 Lecture Notes: Chapter 6 39© 2000 by Mark D. Hill

Exceptions

add $1, $2, $3 overflows!

a surprise branch

• earlier instruction flow to completion

• kill later instructions

• save PC in EPC, PC to exception handler, Cause, etc

cost a lot of designer sanity

CS/ECE 552 Lecture Notes: Chapter 6 40© 2000 by Mark D. Hill

Exceptions

Even worse: in one cycle

• I/O interrupt

• user trap to OS

• illegal instruction

• arithmetic overflow

• hardware error

• etc

CS/ECE 552 Lecture Notes: Chapter 6 41© 2000 by Mark D. Hill

State of the Art: Superscalar

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

i

i+1

F

F

D

D

X

X

M

M

W

W
i+2

i+3

F

F

D

D

X

X

M

M

W

W
i+4

i+5

F

F

D

D

X

X

M

M

W

W
i+5

i+7

F

F

D

D

X

X

M

M

W

W

CS/ECE 552 Lecture Notes: Chapter 6 42© 2000 by Mark D. Hill

State of the Art: Superscalar

IF: parallel access to I-cache, require alignment?

ID: replicate logic, fixed length instrs? hazard checks? dynamic?

EX: parallel/pipelined

MEM: >1 per cycle? If so, hazards, multi-ported register D-cache?

WB: different register files? multi-ported register files?

more things replicated

more possibilities for hazards

more loss due to hazards (why?)

CS/ECE 552 Lecture Notes: Chapter 6 43© 2000 by Mark D. Hill

State of the Art: Out of Order

• execute later instructions while previous is waiting

• decouple into different units

• one to fetch/decode, several to execute, one to write back

• fetch in program order

• execute out of order speculatively!

• commit in order

CS/ECE 552 Lecture Notes: Chapter 6 44© 2000 by Mark D. Hill

Out of Order in the Limit

Execution Wavefront

static

Program

Form

program

dynamic

instruction

stream

execution

window

completed

instructions

instruction fetch

Phase

Processing

& branch prediction

instruction issue

instruction execution

instruction reorder

& commit

dependence checking

& dispatch

CS/ECE 552 Lecture Notes: Chapter 6 45© 2000 by Mark D. Hill

A Generic Out of Order Processor

&dispatch

register
rename

functional units

functional units
and

buffers
instruction

instruction
buffers

integer/address

re-order buffer

data cache

interface

memory

floating pt.

register
integer

file

floating pt.

register

file

instr.

bufferdecode
pre- instr.

cache

CS/ECE 552 Lecture Notes: Chapter 6 46© 2000 by Mark D. Hill

Review

Big picture

Datapath

Control

• data hazards

• stalls

• forwarding

• control flow hazards

• branch prediction

Exceptions

