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Pipelining

Forecast

• Big Picture

• Datapath

• Control

• Data Hazards

• Stalls

• Forwarding

• Control Hazards

• Exceptions

CS/ECE 552 Lecture Notes: Chapter 6 2© 2000 by Mark D. Hill

Motivation

Want to minimize:

• Time = Instructions/prog x CPI x Cycle time = P x ? x ?

Single cycle implementation:

• CPI = 1

• Cycle=imem+reg_rd+alu+dmem+reg_wr+muxes & control

•  = 500 + 250 + 500 + 500 + 250 + 0 + 0 = 2000 ps = 2 ns

• Time/prog = P * 2 ns
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Motivation

Multicycle implementation:

• CPI = 3, 4, 5

• Cycle=Max(memory, registers, ALU, muxes&control)

• = max(500, 250, 500) = 500 ps

• Time/prog = P * 4 * 500 = P * 2000 ps = P * 2 ns

Would like:

• CPI = 1 + hazards

• Cycle = 500 ps + overheads

• In reality, ~3x improvement
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Big Picture

Multicycle implementation:
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Big Picture

Instruction Latency = 5 cycles

Instruction Throughput = 1/5 instructions per cycle

CPI = 5 cycles per instruction

            Pipelining: process instructions like a lunch buffet!

            ALL microprocessors today employ pipelining for speed

            E.g., Intel PentiumIII and Compaq Alpha 21264
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Big Picture
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Big Picture

Instruction latency = 5 cycles - no change

Instruction throughput = 1 instruction per cycle

CPI = 1 cycle per instruction

CPI = cycle between instruction completion = 1!
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Big Picture

But

• datapath? note: five instructions in datapath in cycle 5

• control? must be generated by multiple instructions

• instructions may have data and control flow dependences
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Datapath (Fig. 6.11)

IM Reg DM RegALU

IM Reg DM RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Time (in clock cycles)

lw $2, 200($0)

lw $3, 300($0)

Program
execution
order
(in instructions)

lw $1, 100($0) IM Reg DM RegALU
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Datapath (Fig. 6.10)
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Big Picture

Control

• Set by five different instructions

• Divide and conquer: carry IR down the pipeline

MIPS ISA requires the appearance of sequential execution
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Data Dependence

One instruction produces a value used by a later instruction

E.g.,

• add   $1, - , -

• sub    -, $4, -

1 2 3 4 5 6 7 8 9

i F D X M W*

i+1 F D* X M W
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Data Dependence

Simple solution : Stall the pipeline

E.g.,

• add   $1, - , -

• sub    -, $4, -

But CPI > 1, we will do better using “register forwarding”

1 2 3 4 5 6 7 8 9

add F D X M W*

sub F D* X M W
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Control Dependence

One instruction affects which instruction will execute next

E.g., bne, j

• sw $4, 0($5)

• bne $2, $3, loop

• sub -, - , -

1 2 3 4 5 6 7 8 9

sw F D X M W

bne F D X* M W

sub F D X M W
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Control Dependence

• sw $4, 0($5)

• bne $2, $3, loop

• sub -, - , -

CPI > 1, we will do better

1 2 3 4 5 6 7 8 9

sw F D X M W

bne F D X* M W

?? F D X M W
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Pipelined Datapath

Single-cycle datapath (Recall Fig. 6.10)

Pipelined execution

• assume each instruction has itw own datapath (Fig. 6.11)

• but each instruction uses different part in every cycle

• multiplex all on one datapath

• latch to separate  cycles (as in multicycle) and instructions!

Ignore data and control flow dependences for now

• data hazards

• control flow hazards
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Pipelined Datapath (Fig. 6.12)
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Pipelined Datapath

Instruction flow

• add and load

• write of registers

• pass register specifiers

Any info needed by a later stage will be passed down

• store value through EX
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Pipelined Control

IF and ID

• none

EX

• ALUop, ALUsrc, Regdst

MEM

• Branch MemRead, MemWrite

WB

• MemtoReg, RegWrite

CS/ECE 552 Lecture Notes: Chapter 6 20© 2000 by Mark D. Hill

Figure 6.25
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Figure 6.29
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Figure 6.30
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Pipelined Control

But controlled by different instructions

Decode instructions and pass the signals down the pipe

Control sequencing is embedded in the pipeline
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Pipelining

Not too complex yet

• data hazards

• control hazards

• exceptions
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Data Hazards

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)
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Data Hazards

Must first detect hazards

ID/EX.WriteRegister = IF/ID.ReadRegister1

ID/EX.WriteRegister = IF/ID.ReadRegister2

EX/MEM.WriteRegister = IF/ID.ReadRegister1

EX/MEM.WriteRegister = IF/ID.ReadRegister2

MEM/WB.WriteRegister = IF/ID.ReadRegister1

MEM/WB.WriteRegister = IF/ID.ReadRegister2
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Data Hazards

Not all hazards because some

• WriteRegister not used e.g., sw

• ReadRegister not used e.g., addi, jump

• Do something only if necessary
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Data Hazards

Hazard detection unit

• several 5-bit (or 6-bit) comparators

Response? Stall pipeline

• Instructions in IF and ID stay

• IF/ID pipeline latch not updated

• send “nop” down pipeline - called a “bubble”

• PcWrite, IF/IDWrite and nop mux
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Register Forwarding (Figure 6.38)
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Data Hazard

A better response - forwarding

all of the above made sure reg read after reg write

Instead of stalling

• use mux to select forwarded value rather than reg value

• control mux with hazard detection logic
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Data Hazards

Load followed by a use

Can’t avoid a stall

Stall one cycle and the forward
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Data Hazards

Other options

Disallow hazardous sequences

• compiler will never generate them

• assembly programmers will not use them

• If used, result is random
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Control Flow Hazards

Control flow instructions

• branches, jumps, jals, returns

• can’t fetch until branch outcome known

• too late for next IF
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Control Flow Hazards

What to do?

• Always stall

• easy to implement

• performs poorly

• 1/6th instructions is a branch, each branch takes 3 cycle

• what is the CPI?
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Control Flow Hazards

Predict branch not taken

let sequential instructions go down the pipeline

must kill later instructions if incorrect

must stop memory accesses and reg writes

• including loads (why?)
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Control Flow Hazards

Late flush of instructions on misprediction

Complex
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Control Flow Hazards

Even better but more complex

• predict taken

• predict both

• dynamically adapt to program branch patters

• significant fraction of chip real estate

• PentiumIII

• Alpha 21264

• current topic of research
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Control Flow Hazards

Another option: delayed branches

• always execute following instruction

• delay slot

• put useful instruction, nop otherwise

losing popularity
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Exceptions

add $1, $2, $3 overflows!

a surprise branch

• earlier instruction flow to completion

• kill later instructions

• save PC in EPC, PC to exception handler, Cause, etc

cost a lot of designer sanity

CS/ECE 552 Lecture Notes: Chapter 6 40© 2000 by Mark D. Hill

Exceptions

Even worse: in one cycle

• I/O interrupt

• user trap to OS

• illegal instruction

• arithmetic overflow

• hardware error

• etc
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State of the Art: Superscalar

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

i

i+1

F

F

D

D

X

X

M

M

W

W
i+2

i+3

F

F

D

D

X

X

M

M

W

W
i+4

i+5

F

F

D

D

X

X

M

M

W

W
i+5

i+7

F

F

D

D

X

X

M

M

W

W

CS/ECE 552 Lecture Notes: Chapter 6 42© 2000 by Mark D. Hill

State of the Art: Superscalar

IF: parallel access to I-cache, require alignment?

ID: replicate logic, fixed length instrs? hazard checks? dynamic?

EX: parallel/pipelined

MEM: >1 per cycle? If so, hazards, multi-ported register D-cache?

WB: different register files? multi-ported register files?

more things replicated

more possibilities for hazards

more loss due to hazards (why?)
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State of the Art: Out of Order

• execute later instructions while previous is waiting

• decouple into different units

• one to fetch/decode, several to execute, one to write back

• fetch in program order

• execute out of order speculatively!

• commit in order
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Out of Order in the Limit
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A Generic Out of Order Processor
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Review

Big picture

Datapath

Control

• data hazards

• stalls

• forwarding

• control flow hazards

• branch prediction

Exceptions


