
CS/ECE 552 Lecture Notes: Chapter 7 1© 2000 by Mark D. Hill

Memory Hierarchies

Forecast

• Memory (B5)

• Motivation for memory hierarchy

• Cache

• ECC

• Virtual memory

CS/ECE 552 Lecture Notes: Chapter 7 2© 2000 by Mark D. Hill

Background

Mem
Element Size Speed Price/MB

Register small 1-5ns high ??

SRAM medium 5-25ns $??

DRAM large 60-120ns $1

Disk large 10-20ms $0.20

CS/ECE 552 Lecture Notes: Chapter 7 3© 2000 by Mark D. Hill

Background

Need basic element to store a bit - latch, flip-flop, capacitor

Memory is logically a 2D array of #locations x data-width

• e.g., 16 registers 32 bits each is a 16 x 32 memory

• (4 address bits; 32 bits of data)

• today’s main memory chips are 8M x 8

• (23 address bits; 8 bits of data)

CS/ECE 552 Lecture Notes: Chapter 7 4© 2000 by Mark D. Hill

Register File

32 FF in parallel => one register

16 registers

one 16-way mux per read port

decode write enable

can use tri-state and bus for each port

CS/ECE 552 Lecture Notes: Chapter 7 5© 2000 by Mark D. Hill

SRAM

Static RAM

• does not lose data like DRAM

• 6T CMOS cell

• pass transistors as switch

• bit lines, word lines

SRAM interface

Today - 2M x 8 in 5-15ns

Typical large implementations (512 x 64) x 8

CS/ECE 552 Lecture Notes: Chapter 7 6© 2000 by Mark D. Hill

DRAM

Dense memory

• 1 T cell

• forgets data on read and after a while

• e.g., 16M x 1 in 4k x 4k array

• 24 address bits - 12 for row and 12 for column

Implementation

writeback row to restore destroyed value

Refresh - in background, march through reading all rows

Interface reflects internal orgn. - addr/2, RAS, CAS, data

CS/ECE 552 Lecture Notes: Chapter 7 7© 2000 by Mark D. Hill

Optimizations

Give faster access to some bits of row

• static column - change column address

• page mode - change column address & CAS hit (EDO)

• nibble mode - fast access to 4 bits

Bigger changes in future

• bandwidth inside >> external bandwidth

• 8kb/50ns/chip >> 8b/50ns/chip

• 164 Gb/s >> 20 Mb/s

• RAMBUS, IRAM, etc

CS/ECE 552 Lecture Notes: Chapter 7 8© 2000 by Mark D. Hill

Motivation for Hierarchy

CPU wants

• memory reference/insn * bytes-per-reference * IPC/Cycle

• 1.2*4*1/2ns = 2.4 GB/s

 CPU can go only as fast as memory can supply

CS/ECE 552 Lecture Notes: Chapter 7 9© 2000 by Mark D. Hill

Motivation for Hierarchy

Want memory with

• fast access (e.g., one 500 ps CPU cycle)

• large capacity (10 GB)

• inexpensive ($1/MB)

Incompatible requirements

Fortunately memory references are not random!

CS/ECE 552 Lecture Notes: Chapter 7 10© 2000 by Mark D. Hill

Motivation for Hierarchy

 Locality in time (temporal locality)

 if a datum is recently referenced,

 it is likely to be referenced again soon

Locality in space (spacial locality)

 If a datum is recently referenced,

 neighbouring data is likely to be referenced soon

CS/ECE 552 Lecture Notes: Chapter 7 11© 2000 by Mark D. Hill

Motivation for Hierarchy

E.g.,

• researching term paper - don’t look at all books at random

• if you look at a chapter in one book

• temporal - may re-read the chapter again

• spatial - may read neighbouring chapters

• Solution - leave the book on desk for a while

• hit - book on desk

• miss - book not on desk

• miss ratio - fraction not on desk

CS/ECE 552 Lecture Notes: Chapter 7 12© 2000 by Mark D. Hill

Motivation for Hierarchy

Memory access time = access-desk + miss-ratio * access-shelf

• 1 + 0.05 * 100

• 6 << 100

Extend this to several levels of hierarchy

CS/ECE 552 Lecture Notes: Chapter 7 13© 2000 by Mark D. Hill

Memory Hierarchy

Small, fast, inexpensive memory

larger, slower, cheaper memory

. . .

largest, slowest, cheapest memory

CPU

L1

L2

L3

Ln

larger

faster

CS/ECE 552 Lecture Notes: Chapter 7 14© 2000 by Mark D. Hill

Memory Hierarchy

Type Size Speed
(ns)

Register < 1 KB 0.5

L1 Cache < 128 KB 1

L2 Cache < 16 MB 20

Main
memory

< 4 GB 100

Disk > 10 GB 10 x 106

CS/ECE 552 Lecture Notes: Chapter 7 15© 2000 by Mark D. Hill

Memory Hierarchy

Registers <-> Main memory: managed by compiler/programmer

• holds expression temporaries

• holds variables - more aggressive

• register allocation

• spill when needed

• hard!

CS/ECE 552 Lecture Notes: Chapter 7 16© 2000 by Mark D. Hill

Memory Hierarchy

Main memory <-> Disk: managed by

• program - explicit I/O

• operating system - virtual memory

• illusion of larger memory

• protection

• transparent to user

CS/ECE 552 Lecture Notes: Chapter 7 17© 2000 by Mark D. Hill

Cache

cache managed by hardware

keep recently accessed block

• temporal locality

break memory into blocks (several bytes)

• spatial locality

transfer data to/from cache in blocks

CPU

$

Main Memory

CS/ECE 552 Lecture Notes: Chapter 7 18© 2000 by Mark D. Hill

Cache

put block in “block frame”

• state (e.g., valid)

• address tag

• data

CS/ECE 552 Lecture Notes: Chapter 7 19© 2000 by Mark D. Hill

Cache

on memory access

• if incoming tag == stored tag then HIT

• else MISS

• << replace old block >>

• get block from memory

• put block in cache

• return appropriate word within block

CS/ECE 552 Lecture Notes: Chapter 7 20© 2000 by Mark D. Hill

Cache Example

Memory words:

0x11c 0xe0e0e0e0

0x120 0xffffffff

0x124 0x00000001

0x128 0x00000007

0x12c 0x00000003

0x130 0xabababab

CS/ECE 552 Lecture Notes: Chapter 7 21© 2000 by Mark D. Hill

Cache Example

a 16-byte cache block frame:

• state tag data

• invalid 0x?? ???

lw $4, 0x128

Is tag ox120 in cache? (0x128 mod 16 = 0x128 & 0xfffffff0)

No, get block

• state tag data

• valid 0x129 0xffffffff, 0x1, 0x7, 0x3

CS/ECE 552 Lecture Notes: Chapter 7 22© 2000 by Mark D. Hill

Cache Example

Return 0x7 to CPU to put in $4

lw $5, 0x124

Is tag 0x120 in cache?

Yes, return 0x1 to CPU

CS/ECE 552 Lecture Notes: Chapter 7 23© 2000 by Mark D. Hill

Cache Example

Often

• cache 1 cycle

• main memory 20 cycles

Performance for data accesses with miss ratio 0.1

mean access = cache access + miss ratio * main memory access

 = 1 + 0.01 * 20 = 1.2

Typically caches 64K, main memory 64M

• 20 times faster

• 1/1000 capacity but contains 98% of references

CS/ECE 552 Lecture Notes: Chapter 7 24© 2000 by Mark D. Hill

Cache

4 questions

• Where is block placed?

• How is block found?

• Which block is replaced?

• What happens on a write?

CS/ECE 552 Lecture Notes: Chapter 7 25© 2000 by Mark D. Hill

Cache Design

Simple cache first

• block size = 1 word

• “direct-mapped”

• 16K words (64KB)

• index - 14 bits

• tag - 16 bits

Consider

• hit & miss

• place & replace

Address (showing bit positions)

16 14 Byte
offset

ValidTag Data

Hit Data

16 32

16K
entries

16 bits 32 bits

31 30 17 16 15 5 4 3 2

CS/ECE 552 Lecture Notes: Chapter 7 26© 2000 by Mark D. Hill

Cache Design w/ 16-byte blocks (7.10)

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 432 1 0

CS/ECE 552 Lecture Notes: Chapter 7 27© 2000 by Mark D. Hill

Cache Design

What if blocks conflict?

• Fully associative cache

• CAM cells hold D and D’; incoming bits B and B’

• match = AND (Bi*Di + B’i*D’i)

• compromise - set associative cache

CS/ECE 552 Lecture Notes: Chapter 7 28© 2000 by Mark D. Hill

Cache Design w/ 4-way set-assoc. (7.19)
Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

CS/ECE 552 Lecture Notes: Chapter 7 29© 2000 by Mark D. Hill

Cache Design

3C model

• Conflict

• Capacity

• Compulsory

Q3. Which block is replaced

• LRU

• random

CS/ECE 552 Lecture Notes: Chapter 7 30© 2000 by Mark D. Hill

Cache Design

Q4. What happens on a write?

• write hit must be slower

• propagate to memory?

• immediately - write-through

• on replacement - write-back

CS/ECE 552 Lecture Notes: Chapter 7 31© 2000 by Mark D. Hill

Cache Design

Exploit spatial locality

• bigger block size

• may increase miss penalty

Reduce conflicts

• more associativity

• may increase cache hit time

CS/ECE 552 Lecture Notes: Chapter 7 32© 2000 by Mark D. Hill

Cache Design

Unified vs. split instruction and data cache

Example

• consider building 16K I and D cache

• or a 32K unified cache

• let tcache be 1 cycle and tmemory be 10 cycles

CS/ECE 552 Lecture Notes: Chapter 7 33© 2000 by Mark D. Hill

Cache Design

I and D split cache

• (a) Imiss is 5% and Dmiss is 6%

• 75% references are instruction fetches

• tavg = (1 + 0.05*10)*0.75 + (1 + 0.06*10) * 0.25 = 1.5

Unified cache

• tavg = 1 + 0.04*10 = 1.4 WRONG!

• tavg = 1.4 + cycles-lost-to-interference

• will cycles-lost-to-interference be < 0.1?

• NOT for modern pipelined processors!

CS/ECE 552 Lecture Notes: Chapter 7 34© 2000 by Mark D. Hill

Cache Design

Multi-level caches

Many systems today have a cache hierarchy

E.g.,

• 16K I-cache

• 16K D-cache

• 1M L2-cache

CS/ECE 552 Lecture Notes: Chapter 7 35© 2000 by Mark D. Hill

Cache Design

Why?

• Processors getting faster w.r.t. main memory

• want larger caches to reduce frequency of costly misses

• but larger caches are slower!

Solution: Reduce cost of misses with a second level cache

Begin to occur: 3 Cache Levels

Split L1 instruction & data on chip

Unified L2 on chip

Unified L3 on board

CS/ECE 552 Lecture Notes: Chapter 7 36© 2000 by Mark D. Hill

CPU and Cache Performance

Cache only

• miss ratio

• average access time

Integrate - assume cache hits are part of the pipeline

Time/prog = insn/prog * cycles/insn * sec/cycle

CPI = (execution cycles + stall cycles)/insn

CPI = execution cycles/insn + stall cycles/insn

CS/ECE 552 Lecture Notes: Chapter 7 37© 2000 by Mark D. Hill

CPU and Cache Performance

Stall cycles/insn =

• read stall cycles/insn + write stall cycles/insn

read stall cycles/insn =

• read/insn * miss ratio * read miss penalty

write stall cycles/insn =

• more complex - write through, write back, write buffer?

CS/ECE 552 Lecture Notes: Chapter 7 38© 2000 by Mark D. Hill

CPU and Cache Performance

Example

• CPI with ideal memory is 1.5

• Assume IF and write never stall

• How is CPI degraded if loads are 25% of all insns

• loads miss 10% and miss cost is 20 cycles

CPI = 1.5 + 0.25*0.10*20 = 2

• 2/1,5 = 33% slower

