
CS/ECE 552 Lecture Notes: Chapter 7 1© 2000 by Mark D. Hill

Main Memory (Fig. 7.13)

CPU

Cache

Bus

Memory

a. One-word-wide
 memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

CS/ECE 552 Lecture Notes: Chapter 7 2© 2000 by Mark D. Hill

Main Memory

Each memory access

• 1 cycle address

• 5 cycle DRAM (really 10+)

• 1 cycle data

• 4 word cache block

one word wide: (a=addr, d=delay, b=bus)

• adddddbdddddbdddddbdddddbdddddb

• 1 + 4 *(5+1) = 25

CS/ECE 552 Lecture Notes: Chapter 7 3© 2000 by Mark D. Hill

Main Memory

Four word wide:

• adddddb

• 1 + 5 + 1 = 7

Interleaved (pipelined)

• adddddb

• ddddd b

• ddddd b

• ddddd b

• 1 + 5 + 4 = 10

CS/ECE 552 Lecture Notes: Chapter 7 4© 2000 by Mark D. Hill

Error Correcting Codes (ECC)

Assume small number of random errors - bit(s) get flipped

So in 1 word no errors > single error > two errors > >2 errors

Detection - signal a problem

Correction - restore data to correct value

Most common

• Parity - single error detection

• SECDED - single error correction; double bit detection

CS/ECE 552 Lecture Notes: Chapter 7 5© 2000 by Mark D. Hill

1-bit ECC

Power correct #bits comments

nothing 0, 1 1

SED 00, 11 2 01, 10 detect errors

SEC 000,
111

3 001, 010, 100 => 000

110, 101, 011 => 111

SECDED 0000,
1111

4 one 1 => 0000

two 1’s => error

three 1’s => 1111

CS/ECE 552 Lecture Notes: Chapter 7 6© 2000 by Mark D. Hill

ECC

For SECDED

• # 1’s: 0 1 2 3 4

• result: 0 0 error 1 1

Hamming distance

• no. of changes to convert one code to another

• All legal SECDED codes must be at Hamming distance 4

CS/ECE 552 Lecture Notes: Chapter 7 7© 2000 by Mark D. Hill

ECC

Reduce overhead by doing codes on word, not bit

• overhead

• # bits SED SECDED

• 1 1(100%) 3 (300%)

• 32 1 (3%) 7 (22%)

• 64 1 (1.6%) 8 (13%)

• n 1 (1/n) 1 + log2n + a little

CS/ECE 552 Lecture Notes: Chapter 7 8© 2000 by Mark D. Hill

64-bit ECC

64 bits data 8 bits check

dddd.......d ccccccc

use eight by 9 SIMMs = 72 bits

Intuition

• one check bit is parity

• other check bits point to

• error in data

• error in all check bits

• no error

CS/ECE 552 Lecture Notes: Chapter 7 9© 2000 by Mark D. Hill

ECC

To store

• use data0 to compute check0

• store data0 and check0

To load

• read data1 and check1

• use data1 to compute check2

• syndrome = check1 xor check2

CS/ECE 552 Lecture Notes: Chapter 7 10© 2000 by Mark D. Hill

ECC Syndrome

Correction Parity Implication

0 0 data1==data0

n 0 flip bit n of data1
to get data0

x 1 signal error

CS/ECE 552 Lecture Notes: Chapter 7 11© 2000 by Mark D. Hill

Virtual Memory

Basic idea

• move data from disk and main memory like

• caches to/from main memory

But

• miss penalty for first byte is 1M cycles, not 10-100

• therefore engineered differently

• later, we will return to the 4 questions

CS/ECE 552 Lecture Notes: Chapter 7 12© 2000 by Mark D. Hill

Virtual Memory

Blocks are called pages

• typically 4K-16K

• fixed size per system

Picture (draw program pages in memory & disk)

Architecture presents programs with a simple view

• memory addressed with 32-bit addresses

• lw $1, 0x100028 => 0x100028 is the “virtual address”

• system maps VA to physical address (PA)

• 0x100028 -> 0xF028 (page 15, offset 28 for 4K page)

CS/ECE 552 Lecture Notes: Chapter 7 13© 2000 by Mark D. Hill

Virtual Memory

someone else and I run unrelated programs each

• lw $1, 0x100028

• VA must map to different PA

Thus, VA allows

• use more physical memory than system has

• think it is the only program running in memory

• think it always starts at address 0x0

• be protected from rogue programs

• start running when most of the program is still on disk

CS/ECE 552 Lecture Notes: Chapter 7 14© 2000 by Mark D. Hill

Virtual Memory

A VA miss is called a page fault

• an exception that saves the PC

• OS gains control and initiates disk access

• OS usually runs someone else in the meantime

• interrupt when disk access is complete

• original instruction restarts

Unlike cache misses, why is OS used to handle a page fault?

CS/ECE 552 Lecture Notes: Chapter 7 15© 2000 by Mark D. Hill

Address Translation

VA -> PA

E.g., 4K pages

Use page tables of 4B PTEs

• index with page offset

• address of PTE = PTBR + page offset*4

CS/ECE 552 Lecture Notes: Chapter 7 16© 2000 by Mark D. Hill

Address Translation

PTE contains

• page frame number

• valid bit

• protection bits

Each program has own PT; switch by chaging PTBR

CS/ECE 552 Lecture Notes: Chapter 7 17© 2000 by Mark D. Hill

Translation Buffer

VM causes 100% overhead - 2 memory accesses - PTE + data!

What to do?

• temporal and spatial locality

Translation (Lookaside) Buffer

• a cache of translations

• valid tag data

• valid page# page frame# rest of PTE

• 1 20 20 12?

could make Fully/Set associative/Direct mapped

CS/ECE 552 Lecture Notes: Chapter 7 18© 2000 by Mark D. Hill

Example (Fig. 7.25)

Valid Tag Data

Page offset

Page offset

Virtual page number

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

CS/ECE 552 Lecture Notes: Chapter 7 19© 2000 by Mark D. Hill

Other Issues

Virtual address caches are also possible

• faster

• but synonym problem

On context switch

• change PTBR

• either flush TLB or add PIDs to TLB tags

CS/ECE 552 Lecture Notes: Chapter 7 20© 2000 by Mark D. Hill

Virtual Memory

4 Questions

Where is a page placed

• fully associative - any page on any frame

How is page found

• not associative search but indirection through PT

CS/ECE 552 Lecture Notes: Chapter 7 21© 2000 by Mark D. Hill

Virtual Memory

Which page is replaced

• approx LRU clock

• use page reference bit

What happens on a write

• write-backs

• use page dirty bit

CS/ECE 552 Lecture Notes: Chapter 7 22© 2000 by Mark D. Hill

Protection

User VAs map to different PAs - no overlap

But may want sharing

• user-user

• user-kernel (mode bit, syscall interface)

• In PTE and TLB entry

• invalid (had before)

• read-only

• read-write (had before)

CS/ECE 552 Lecture Notes: Chapter 7 23© 2000 by Mark D. Hill

Page Table Size

How big is the PT?

• 232/4K * 4 = 4M per program

To make smaller

• define a limit register

• do limit registers for a few regions - stack, heap

• page a part of PT (terminate recursion)

• Segmented VA (noncontiguous alloc, segment table->PT)

• use Hash table to map PA-VA - called inverted PT

CS/ECE 552 Lecture Notes: Chapter 7 24© 2000 by Mark D. Hill

More Optimizations

Non-blocking caches

• handle hits under misses Interleaved/banked caches

• multiple requests simultaneously (poor-man’s multiporting)

Write Buffers

• miss penalty of dirty blocks

Out-of-order CPU

• tolerate cache hit and miss latencies

CS/ECE 552 Lecture Notes: Chapter 7 25© 2000 by Mark D. Hill

More Optimizations

Compiler optimizations

• get rid of memory accesses (register allocation, reuse)

• improve locality (blocking, tiling)

• insert prefetch code

• scheduling

CS/ECE 552 Lecture Notes: Chapter 7 26© 2000 by Mark D. Hill

Real Stuff

DEC Alpha 21264 (550 MHz)

• L1 cache

• 4 way out-of-order CPU pipeline

• 2 loads/stores per cycle (phase pipelined)

• 3 cycles hit latency, 8+ GB/s bandwidth

• L2 cache

• 12 cycle hit latency, 4+ GB/s bandwidth

• System interface

• 64 bit bus, 80 cycle latency, 2+ GB/s bandwidth

CS/ECE 552 Lecture Notes: Chapter 7 27© 2000 by Mark D. Hill

Real Stuff

Charac Pentium Pro PowerPC

VA 32 bits 52 bits

PA 32 bits 32 bits

Page size 4 KB, 4 MB 4 KB, select-
able, 256 MB

TLB split I and D

4-way assoc

pseudo random

I - 32, D - 64

TLB miss H/W

split I and D

2-way assoc

LRU

I - 128, D- 128

TLB miss H/W

CS/ECE 552 Lecture Notes: Chapter 7 28© 2000 by Mark D. Hill

Real Stuff

Charac Pentium Pro PowerPC

cache split I and D split I and D

size 8KB each 16 KB each

assoc 4-way 4-way

replace approx LRU LRU

block 32 bytes 32 bytes

write write-back write-back or
write-through

CS/ECE 552 Lecture Notes: Chapter 7 29© 2000 by Mark D. Hill

Summary

Temporal and spatial locality, Memory hierarchy

Cache design - block size, associativity, write back/through

Multilevel cache hierarchies

Virtual memory, translation (VA -> PA), page table (PT)

VM design - page size, FA through PT, reference bit, dirty bit

Fast translations - TLB

Protection, page faults (exceptions)

CS/ECE 552 Lecture Notes: Chapter 7 30© 2000 by Mark D. Hill

Summary

4 Questions - cache, VM, TLB

• Where can a block be placed

• one (DM), a few (SA), any (FA)

• How is a block found

• indexing (DM), search (SA/FA), table lookup (PT)

• What is replaced on a miss

• LRU or random

• How are writes handled

• write through or write back; write back for VM

