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Main Memory (Fig. 7.13)
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Main Memory

Each memory access

• 1 cycle address

• 5 cycle DRAM (really 10+)

• 1 cycle data

• 4 word cache block

one word wide: (a=addr, d=delay, b=bus)

• adddddbdddddbdddddbdddddbdddddb

• 1 + 4 *(5+1) = 25
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Main Memory

Four word wide:

• adddddb

• 1 + 5 + 1 = 7

Interleaved (pipelined)

• adddddb

•   ddddd  b

•   ddddd    b

•   ddddd      b

• 1 + 5 + 4 = 10
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Error Correcting Codes (ECC)

Assume small number of random errors - bit(s) get flipped

So in 1 word no errors > single error > two errors > >2 errors

Detection - signal a problem

Correction - restore data to correct value

Most common

• Parity - single error detection

• SECDED - single error correction; double bit detection
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1-bit ECC

Power correct #bits comments

nothing 0, 1  1

SED 00, 11 2 01, 10 detect errors

SEC 000,
111

3 001, 010, 100 => 000

110, 101, 011 => 111

SECDED 0000,
1111

4 one 1 => 0000

two 1’s => error

three 1’s => 1111
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ECC

For SECDED

• #  1’s:   0    1    2    3    4

• result:   0    0  error  1    1

Hamming distance

• no. of changes to convert one code to another

• All legal SECDED codes must be at Hamming distance 4
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ECC

Reduce overhead by doing codes on word, not bit

• overhead

• # bits   SED            SECDED

• 1         1(100%)       3 (300%)

• 32       1 (3%)          7 (22%)

• 64       1 (1.6%)       8 (13%)

• n         1 (1/n)          1 + log2n + a little
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64-bit ECC

64 bits data     8 bits check

dddd.......d      ccccccc

use eight by 9 SIMMs = 72 bits

Intuition

• one check bit is parity

• other check bits point to

• error in data

• error in all check bits

• no error
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ECC

To store

• use data0 to compute check0

• store data0 and check0

To load

• read data1 and check1

• use data1 to compute check2

• syndrome = check1 xor check2
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ECC Syndrome

Correction Parity Implication

0 0 data1==data0

n 0 flip bit n of data1
to get data0

x 1 signal error
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Virtual Memory

Basic idea

• move data from disk and main memory like

• caches to/from main memory

But

• miss penalty for first byte is 1M cycles, not 10-100

• therefore engineered differently

• later, we will return to the 4 questions
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Virtual Memory

Blocks are called pages

• typically 4K-16K

• fixed size per system

Picture (draw program pages in memory & disk)

Architecture presents programs with a simple view

• memory addressed with 32-bit addresses

• lw $1, 0x100028 => 0x100028 is the “virtual address”

• system maps VA to physical address (PA)

• 0x100028 -> 0xF028 (page 15, offset 28 for 4K page)
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Virtual Memory

someone else  and I run unrelated programs each

• lw $1, 0x100028

• VA must map to different PA

Thus, VA allows

• use more physical memory than system has

• think it is the only program running in memory

• think it always starts at address 0x0

• be protected from rogue programs

• start running when most of the program is still on disk
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Virtual Memory

A VA miss is called a page fault

• an exception that saves the PC

• OS gains control and initiates disk access

• OS usually runs someone else in the meantime

• interrupt when disk access is complete

• original instruction restarts

Unlike cache misses, why is OS used to handle a page fault?
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Address Translation

VA -> PA

E.g., 4K pages

Use page tables of 4B PTEs

• index with page offset

• address of PTE = PTBR + page offset*4
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Address Translation

PTE contains

• page frame number

• valid bit

• protection bits

Each program has own PT; switch by chaging PTBR
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Translation Buffer

VM causes 100% overhead - 2 memory accesses - PTE + data!

What to do?

• temporal and spatial locality

Translation (Lookaside) Buffer

• a cache of translations

• valid   tag    data

• valid page#  page frame#    rest of PTE

• 1         20          20                   12?

could make Fully/Set associative/Direct mapped
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Example (Fig. 7.25)
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Other Issues

Virtual address caches are also possible

• faster

• but synonym problem

On context switch

• change PTBR

• either flush TLB or add PIDs to TLB tags
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Virtual Memory

4 Questions

Where is a page placed

• fully associative - any page on any frame

How is page found

• not associative search but  indirection through PT
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Virtual Memory

Which page is replaced

• approx LRU clock

• use page reference bit

What happens on a write

• write-backs

• use page dirty bit
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Protection

User VAs map to different PAs - no overlap

But may want sharing

• user-user

• user-kernel (mode bit, syscall interface)

• In PTE and TLB entry

• invalid (had before)

• read-only

• read-write (had before)
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Page Table Size

How big is the PT?

• 232/4K * 4 = 4M per program

To make smaller

• define a limit register

• do limit registers for a few regions - stack, heap

• page a part of PT (terminate recursion)

• Segmented VA (noncontiguous alloc, segment table->PT)

• use Hash table to map PA-VA - called inverted PT
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More Optimizations

Non-blocking caches

• handle hits under misses Interleaved/banked caches

• multiple requests simultaneously (poor-man’s multiporting)

Write Buffers

• miss penalty of dirty blocks

Out-of-order CPU

• tolerate cache hit and miss latencies
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More Optimizations

Compiler optimizations

• get rid of memory accesses (register allocation, reuse)

• improve locality (blocking, tiling)

• insert prefetch code

• scheduling
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Real Stuff

DEC Alpha 21264 (550 MHz)

• L1 cache

• 4 way out-of-order CPU pipeline

• 2 loads/stores per cycle (phase pipelined)

• 3 cycles hit latency, 8+ GB/s  bandwidth

• L2 cache

• 12 cycle hit latency, 4+ GB/s bandwidth

• System interface

• 64 bit bus, 80 cycle latency, 2+ GB/s bandwidth
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Real Stuff

Charac  Pentium Pro PowerPC

VA 32 bits  52 bits

PA 32 bits 32 bits

Page size 4 KB, 4 MB 4 KB, select-
able, 256 MB

TLB split I and D

4-way assoc

pseudo random

I - 32, D - 64

TLB miss H/W

split I and D

2-way assoc

LRU

I - 128, D- 128

TLB miss H/W
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Real Stuff

Charac  Pentium Pro PowerPC

cache split I and D split I and D

size 8KB each 16 KB each

assoc 4-way 4-way

replace approx LRU LRU

block 32 bytes 32 bytes

write write-back write-back or
write-through
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Summary

Temporal and spatial locality, Memory hierarchy

Cache design - block size, associativity, write back/through

Multilevel cache hierarchies

Virtual memory, translation (VA -> PA), page table (PT)

VM design - page size, FA through PT, reference bit, dirty bit

Fast translations - TLB

Protection, page faults (exceptions)
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Summary

4 Questions - cache, VM, TLB

• Where can a block be placed

• one (DM), a few (SA), any (FA)

• How is a block found

• indexing (DM), search (SA/FA), table lookup (PT)

• What is replaced on a miss

• LRU or random

• How are writes handled

• write through or write back; write back for VM


