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Credits 

●  Material for these slides has been contributed by  
  Prof. Saman Amarasinghe, MIT 
  Prof. Mark Hill, Wisconsin 
  Prof. David Patterson, Berkeley 
  Prof. Marc Snir, Illinois 
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The “Software Crisis” 

“To put it quite bluntly: as long as there were no 
machines, programming was no problem at all; 
when we had a few weak computers, 
programming became a mild problem, and now 
we have gigantic computers, programming has 
become an equally gigantic problem." 

-- E. Dijkstra, 1972 Turing Award Lecture 
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The First Software Crisis 

●  Time Frame: ’60s and ’70s 

●  Problem:  Assembly Language Programming 
  Computers could handle larger more complex programs 

●  Needed to get Abstraction and Portability without 
losing Performance 
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How Did We Solve the  
First Software Crisis? 

●  High-level languages for von-Neumann machines 
  FORTRAN and C 

●  Provided “common machine language” for 
uniprocessors 

Common Properties 
Single flow of control 

Single memory image 

Differences: 
Register File 

ISA 

Functional Units 
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The Second Software Crisis 

●  Time Frame: ’80s and ’90s 

●  Problem:  Inability to build and maintain complex and 
robust applications requiring multi-million lines of code 
developed by hundreds of programmers 
  Computers could handle larger more complex programs 

●  Needed to get Composability, Malleability and 
Maintainability 
  High-performance was not an issue  left for Moore’s Law  
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How Did We Solve the  
Second Software Crisis? 

●  Object Oriented Programming 
  C++, C# and Java 

●  Also… 
  Better tools 

–  Component libraries, Purify   
  Better software engineering methodology  

–  Design patterns, specification, testing, code reviews 
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●  Solid boundary between Hardware and Software 

●  Programmers don’t have to know anything about the 
processor 
  High level languages abstract away the processors 

–  Ex: Java bytecode is machine independent  
  Moore’s law does not require the programmers to know 

anything about the processors to get good speedups 

●  Programs are oblivious of the processor  work on all 
processors 
  A program written in ’70 using C still works and is much faster 

today 

●  This abstraction provides a lot of freedom for the 
programmers 

Today:  
Programmers are Oblivious to Processors 
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The Origins of a Third Crisis 

●  Time Frame: 2005 to 20?? 

●  Problem: Sequential performance is left behind by Moore’s law 

●  Needed continuous and reasonable performance improvements  
  to support new features 
  to support larger datasets 

●  While sustaining portability, malleability and maintainability  
without unduly increasing complexity faced by the programmer  

 critical to keep-up with the current rate of evolution in software 
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March to multicore 

●  Silicon feature size 
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8086 

286 

386 

486 

Pentium 
P2 

P3 
P4 

Itanium 
Itanium 2 

The March to Multicore: 
Moore’s Law 

From David Patterson 
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From Hennessy and Patterson, Computer Architecture: �
A Quantitative Approach, 4th edition, 2006


N
um

ber of Transistors 

Moore: # of transistors per chip will double every N months 
N= 12, then 18, and now around 24 
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The March to Multicore: 
Uniprocessor Performance (SPECint) 



7 

13 CS758 Prof. David Wood 

The March to Multicore: 
Uniprocessor Performance (SPECint) 

●  General-purpose uniprocessors have stopped 
historic performance scaling 
  Power consumption  Thermal limits 
  Wire delays 
  DRAM access latency 
  Diminishing returns of more instruction-level parallelism 

From David Patterson 
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Power Consumption (watts) 
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Power Efficiency (watts/spec) 

16 CS758 Prof. David Wood 

Range of a Wire in One Clock Cycle 

Year 

P
ro

ce
ss

 (m
ic

ro
ns

) 

700 MHz 

1.25 GHz 

2.1 GHz 

6 GHz 
10 GHz 

13.5 GHz 

•  400 mm2 Die 
•  From the SIA Roadmap 
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DRAM Access Latency 

●  Access times are a speed of 
light issue 

●  Memory technology is also 
changing 
  SRAM are getting harder 

to scale 
  DRAM is no longer 

cheapest cost/bit 
●  Power efficiency is an issue 

here as well 

µProc 
60%/yr. 

(2X/1.5yr) 

DRAM 
9%/yr. 

(2X/10 yrs) 
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Diminishing Returns  

●  The ’80s: Superscalar expansion  
  50% per year improvement in performance 
  Transistors applied to implicit parallelism 

–  pipeline processor (10 CPI --> 1 CPI) 
●  The ’90s: The Era of Diminishing Returns 

  Squeaking out the last implicit parallelism 
–  2-way to 6-way issue, out-of-order issue, branch prediction 
–  1 CPI --> 0.5 CPI 

  performance below expectations 
  projects delayed & canceled  

●  The ’00s: The Beginning of the Multicore Era 
  The shift to Explicit Parallelism  
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AMD Opteron 
Dual Core 

Intel Montecito 
1.7 Billion transistors 

Dual Core IA/64 
Intel Tanglewood 
Dual Core IA/64 

Intel Pentium Extreme 
3.2GHz Dual Core 

Intel Tejas & Jayhawk 
Unicore (4GHz P4) 

Intel Dempsey 
Dual Core Xeon 

Intel Pentium D 
(Smithfield) 

Cancelled 

Intel Yonah 
Dual Core Mobile 

IBM Power 6 
Dual Core 

IBM Power 4 and 5 
Dual Cores Since 2001 

IBM Cell  
Scalable Multicore 

Sun Olympus and Niagara 
8 Processor Cores  

MIT Raw  
16 Cores 

Since 2002 

… 1H 2005 1H 2006 2H 2006 2H 2005 2H 2004 

Uniprocessors essentially extinct 
Multicores are here  
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1985 1990 1980 1970 1975 1995 2000 2005 

Raw 

Power4 
Opteron 

Power6 

Niagara 

Yonah 
PExtreme 

Tanglewood 

Cell 

Intel 
Tflops 

Xbox360 

Cavium 
Octeon 

Raza 
XLR 

PA-8800  

Cisco 
CSR-1 

Picochip 
PC102 

Boardcom 1480 

2010 

# of 
cores 

1 

2 

4 

8 

16 

32 

64 

128 
256 

512 

Opteron 4P 
Xeon MP 

Ambric 
AM2045 

Multicores are Here 

4004 

8008 

8086 8080 286 386 486 Pentium P2 P3 
P4 
Itanium 

Itanium 2 Athlon 
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Programming Multicores 

The Dilbert Approach
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CS758: Multicore Programming 

●  Pthreads 
●  OpenMP 
●  Cilk++ 
●  Threaded Building Blocks (TBB) 
●  Serialization Sets 
●  MapReduce 
●  Transactional Memory 
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CS758: Requirements and Outcomes 

●  Requirements 
   Substantial programming experience (C/C++) 
   At least one 700-level course in either architecture, 

programming languages, or operating systems 
–  Some architecture background (at least CS552) 

  Instructor's consent 
●  Outcomes 

  Know fundamental concepts of parallel programming 
(both hardware and software) 

  Understand issues of parallel performance  
  Hands-on experience with several multicore platforms 

and programming models 
  Significant parallel programming project 
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Course operation   

●  See web site 


