
1

1 CS758

CS758: Multicore Programming

Prof. David Wood
Fall 2009

Introduction

2 CS758 Prof. David Wood

Credits

●  Material for these slides has been contributed by
  Prof. Saman Amarasinghe, MIT
  Prof. Mark Hill, Wisconsin
  Prof. David Patterson, Berkeley
  Prof. Marc Snir, Illinois

2

3 CS758 Prof. David Wood

The “Software Crisis”

“To put it quite bluntly: as long as there were no
machines, programming was no problem at all;
when we had a few weak computers,
programming became a mild problem, and now
we have gigantic computers, programming has
become an equally gigantic problem."

-- E. Dijkstra, 1972 Turing Award Lecture

4 CS758 Prof. David Wood

The First Software Crisis

●  Time Frame: ’60s and ’70s

●  Problem: Assembly Language Programming
  Computers could handle larger more complex programs

●  Needed to get Abstraction and Portability without
losing Performance

3

5 CS758 Prof. David Wood

How Did We Solve the
First Software Crisis?

●  High-level languages for von-Neumann machines
  FORTRAN and C

●  Provided “common machine language” for
uniprocessors

Common Properties
Single flow of control

Single memory image

Differences:
Register File

ISA

Functional Units

6 CS758 Prof. David Wood

The Second Software Crisis

●  Time Frame: ’80s and ’90s

●  Problem: Inability to build and maintain complex and
robust applications requiring multi-million lines of code
developed by hundreds of programmers
  Computers could handle larger more complex programs

●  Needed to get Composability, Malleability and
Maintainability
  High-performance was not an issue  left for Moore’s Law

4

7 CS758 Prof. David Wood

How Did We Solve the
Second Software Crisis?

●  Object Oriented Programming
  C++, C# and Java

●  Also…
  Better tools

–  Component libraries, Purify
  Better software engineering methodology

–  Design patterns, specification, testing, code reviews

8 CS758 Prof. David Wood

●  Solid boundary between Hardware and Software

●  Programmers don’t have to know anything about the
processor
  High level languages abstract away the processors

–  Ex: Java bytecode is machine independent
  Moore’s law does not require the programmers to know

anything about the processors to get good speedups

●  Programs are oblivious of the processor  work on all
processors
  A program written in ’70 using C still works and is much faster

today

●  This abstraction provides a lot of freedom for the
programmers

Today:
Programmers are Oblivious to Processors

5

9 CS758 Prof. David Wood

The Origins of a Third Crisis

●  Time Frame: 2005 to 20??

●  Problem: Sequential performance is left behind by Moore’s law

●  Needed continuous and reasonable performance improvements
  to support new features
  to support larger datasets

●  While sustaining portability, malleability and maintainability
without unduly increasing complexity faced by the programmer

 critical to keep-up with the current rate of evolution in software

10 CS758 Prof. David Wood

March to multicore

●  Silicon feature size

6

11 CS758 Prof. David Wood

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

The March to Multicore:
Moore’s Law

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture: �
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

Moore: # of transistors per chip will double every N months
N= 12, then 18, and now around 24

12 CS758 Prof. David Wood

The March to Multicore:
Uniprocessor Performance (SPECint)

7

13 CS758 Prof. David Wood

The March to Multicore:
Uniprocessor Performance (SPECint)

●  General-purpose uniprocessors have stopped
historic performance scaling
  Power consumption  Thermal limits
  Wire delays
  DRAM access latency
  Diminishing returns of more instruction-level parallelism

From David Patterson

14 CS758 Prof. David Wood

Power Consumption (watts)

8

15 CS758 Prof. David Wood

Power Efficiency (watts/spec)

16 CS758 Prof. David Wood

Range of a Wire in One Clock Cycle

Year

P
ro

ce
ss

 (m
ic

ro
ns

)

700 MHz

1.25 GHz

2.1 GHz

6 GHz
10 GHz

13.5 GHz

•  400 mm2 Die
•  From the SIA Roadmap

9

17 CS758 Prof. David Wood

DRAM Access Latency

●  Access times are a speed of
light issue

●  Memory technology is also
changing
  SRAM are getting harder

to scale
  DRAM is no longer

cheapest cost/bit
●  Power efficiency is an issue

here as well

µProc
60%/yr.

(2X/1.5yr)

DRAM
9%/yr.

(2X/10 yrs)

18 CS758 Prof. David Wood

Diminishing Returns

●  The ’80s: Superscalar expansion
  50% per year improvement in performance
  Transistors applied to implicit parallelism

–  pipeline processor (10 CPI --> 1 CPI)
●  The ’90s: The Era of Diminishing Returns

  Squeaking out the last implicit parallelism
–  2-way to 6-way issue, out-of-order issue, branch prediction
–  1 CPI --> 0.5 CPI

  performance below expectations
  projects delayed & canceled

●  The ’00s: The Beginning of the Multicore Era
  The shift to Explicit Parallelism

10

19 CS758 Prof. David Wood

AMD Opteron
Dual Core

Intel Montecito
1.7 Billion transistors

Dual Core IA/64
Intel Tanglewood
Dual Core IA/64

Intel Pentium Extreme
3.2GHz Dual Core

Intel Tejas & Jayhawk
Unicore (4GHz P4)

Intel Dempsey
Dual Core Xeon

Intel Pentium D
(Smithfield)

Cancelled

Intel Yonah
Dual Core Mobile

IBM Power 6
Dual Core

IBM Power 4 and 5
Dual Cores Since 2001

IBM Cell
Scalable Multicore

Sun Olympus and Niagara
8 Processor Cores

MIT Raw
16 Cores

Since 2002

… 1H 2005 1H 2006 2H 2006 2H 2005 2H 2004

Uniprocessors essentially extinct
Multicores are here

20 CS758 Prof. David Wood

1985 1990 1980 1970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

2010

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Ambric
AM2045

Multicores are Here

4004

8008

8086 8080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2 Athlon

11

21 CS758 Prof. David Wood

Programming Multicores

The Dilbert Approach

22 CS758 Prof. David Wood

CS758: Multicore Programming

●  Pthreads
●  OpenMP
●  Cilk++
●  Threaded Building Blocks (TBB)
●  Serialization Sets
●  MapReduce
●  Transactional Memory

12

23 CS758 Prof. David Wood

CS758: Requirements and Outcomes

●  Requirements
  Substantial programming experience (C/C++)
  At least one 700-level course in either architecture,

programming languages, or operating systems
–  Some architecture background (at least CS552)

  Instructor's consent
●  Outcomes

  Know fundamental concepts of parallel programming
(both hardware and software)

  Understand issues of parallel performance
  Hands-on experience with several multicore platforms

and programming models
  Significant parallel programming project

24 CS758 Prof. David Wood

Course operation

●  See web site

