
1

1 CS758

CS758

Introduction to Parallel Architectures

To learn more, take CS757

Slides adapted from Saman Amarasinghe

2 CS758 Prof. David Wood

Implicit vs. Explicit Parallelism

Implicit Explicit

Hardware Compiler

Superscalar
Processors Explicitly Parallel Architectures

2

3 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

4 CS758 Prof. David Wood

Implicit Parallelism: Superscalar
Processors

●  Issue varying numbers of instructions per clock
  statically scheduled

–  using compiler techniques
–  in-order execution

  dynamically scheduled
–  Extracting ILP by examining 100’s of instructions
–  Scheduling them in parallel as operands become available
–  Rename registers to eliminate anti dependences
–  out-of-order execution
–  Speculative execution

3

5 CS758 Prof. David Wood

Pipelining Execution

Instruction i IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

Instruction # 1 2 3 4 5 6 7 8

Cycles

IF: Instruction fetch ID : Instruction decode
EX : Execution WB : Write back

6 CS758 Prof. David Wood

Super-Scalar Execution

Integer IF ID EX WB

Instruction type 1 2 3 4 5 6 7

Cycles

Floating point IF ID EX WB
Integer

Floating point
Integer

Floating point
Integer

Floating point

IF ID EX WB
IF ID EX WB

IF ID EX WB
IF ID EX WB

IF ID EX WB
IF ID EX WB

2-issue super-scalar machine

4

7 CS758 Prof. David Wood

Data Dependence and Hazards

●  InstrJ is data dependent (aka true dependence) on
InstrI:
 

●  If two instructions are data dependent, they cannot
execute simultaneously, be completely overlapped
or execute in out-of-order

●  If data dependence caused a hazard in pipeline,
called a Read After Write (RAW) hazard

I: add r1,r2,r3
J: sub r4,r1,r3

8 CS758 Prof. David Wood

ILP and Data Dependencies, Hazards

●  HW/SW must preserve program order:
order instructions would execute in if executed
sequentially as determined by original source
program
  Dependences are a property of programs

●  Importance of the data dependencies
  1) indicates the possibility of a hazard
  2) determines order in which results must be calculated
  3) sets an upper bound on how much parallelism can

possibly be exploited
●  Goal: exploit parallelism by preserving program

order only where it affects the outcome of the
program

5

9 CS758 Prof. David Wood

Name Dependence #1: Anti-dependence

●  Name dependence: when 2 instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated with
that name; 2 versions of name dependence

●  InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

●  If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

10 CS758 Prof. David Wood

Name Dependence #2: Output dependence

●  InstrJ writes operand before InstrI writes it.

●  Called an “output dependence” by compiler writers.
This also results from the reuse of name “r1”

●  If anti-dependence caused a hazard in the pipeline, called a Write
After Write (WAW) hazard

●  Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict
  Register renaming resolves name dependence for registers
  Renaming can be done either by compiler or by HW

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

6

11 CS758 Prof. David Wood

Control Dependencies
●  Every instruction is control dependent on some set of branches,

and, in general, these control dependencies must be preserved to
preserve program order

–  if p1 {
–  S1;
–  };
–  if p2
–  S2;
–  }

●  S1 is control dependent on p1, and S2 is control dependent on p2
but not on p1.

●  Control dependence need not be preserved
  willing to execute instructions that should not have been executed,

thereby violating the control dependences, if can do so without affecting
correctness of the program

●  Speculative Execution

12 CS758 Prof. David Wood

Speculation

●  Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches and
executing program as if guesses were correct
  Speculation ⇒ fetch, issue, and execute instructions as

if branch predictions were always correct
  Dynamic scheduling ⇒ only fetches and issues

instructions
●  Essentially a data flow execution model: Operations

execute as soon as their operands are available

7

13 CS758 Prof. David Wood

Speculation Rampant in Modern Superscalars

●  Different predictors
  Branch Prediction
  Value Prediction
  Prefetching (memory access pattern prediction)

●  Inefficient
  Predictions can go wrong
  Has to flush out wrongly predicted data
  Wrong predictions consume power

14 CS758 Prof. David Wood

Today’s CPU Architecture:
Heat becoming an unmanageable problem

Intel Developer Forum, Spring 2004 - Pat Gelsinger
 (Pentium at 90 W)

Cube relationship between the cycle time and power.

8

15 CS758 Prof. David Wood

Pentium-IV

●  Pipelined
  minimum of 11 stages for any

instruction
●  Instruction-Level Parallelism

  Can execute up to 3 x86
instructions per cycle

●  Data Parallel Instructions
  MMX (64-bit) and SSE (128-

bit) extensions provide short
vector support

●  Thread-Level Parallelism at
System Level
  Bus architecture supports

shared memory
multiprocessing

16 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

9

17 CS758 Prof. David Wood

Explicit Parallel Processors

●  Parallelism is exposed to software
  Compiler or Programmer

●  Many different forms
  Loosely coupled Multiprocessors to tightly coupled VLIW

18 CS758 Prof. David Wood

Little’s Law

●  Parallelism = Throughput * Latency
●  To maintain throughput T/cycle when each operation has latency L

cycles, need T*L independent operations
●  For fixed parallelism:

  decreased latency allows increased throughput
  decreased throughput allows increased latency tolerance

Latency in Cycles

Throughput per Cycle

One Operation

10

19 CS758 Prof. David Wood

Types of Parallelism

Data-Level Parallelism (DLP)

Ti
m

e

Ti
m

e

Thread-Level Parallelism (TLP)

Ti
m

e

Instruction-Level Parallelism (ILP)

Pipelining

Ti
m

e

20 CS758 Prof. David Wood

Issues in Parallel Machine Design

●  Communication
  how do parallel operations communicate data results?

●  Synchronization
  how are parallel operations coordinated?

●  Resource Management
  how are a large number of parallel tasks scheduled onto finite

hardware?

●  Scalability
  how large a machine can be built?

11

21 CS758 Prof. David Wood

Flynn’s Classification (1966)
●  Broad classification of parallel computing systems based on number

of instruction and data streams
●  SISD: Single Instruction, Single Data

  conventional uniprocessor
●  SIMD: Single Instruction, Multiple Data

  one instruction stream, multiple data paths
  distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
  shared memory SIMD (STARAN, vector computers)

●  MIMD: Multiple Instruction, Multiple Data
  message passing machines (Transputers, nCube, CM-5)
  non-cache-coherent shared memory machines (BBN Butterfly, T3D)
  cache-coherent shared memory machines (Sequent, Sun Starfire, SGI

Origin)
●  MISD: Multiple Instruction, Single Data

  no commercial examples

22 CS758 Prof. David Wood

Saman’s Classification++

●  By the level of sharing
  Shared Pipeline
  Shared Instruction
  Shared Sequencer
  Shared Memory
  Shared Network

12

23 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

24 CS758 Prof. David Wood

Shared Pipeline (aka SMT)

•  Time evolution of issue slots
•  Color = thread (white is idle)

CGMT FGMT SMT

13

25 CS758 Prof. David Wood

25

SMT creates MLP
●  Off-Chip Misses are now hundreds of cycles
●  Limits ILP

●  Multiple instruction streams creates memory-level parallelism (MLP)

Time 


 In

st
rn

s

I1
I2

I3
I4

window = 4 (64)

Overlaps
cache misses

Time 


 In

st
rn

s

26 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

14

27 CS758 Prof. David Wood

Shared Instruction: SIMD Machines
●  Illiac IV (1972)

  64 64-bit PEs, 16KB/PE, 2D network
●  Goodyear STARAN (1972)

  256 bit-serial associative PEs, 32B/PE, multistage network
●  ICL DAP (Distributed Array Processor) (1980)

  4K bit-serial PEs, 512B/PE, 2D network
●  Goodyear MPP (Massively Parallel Processor) (1982)

  16K bit-serial PEs, 128B/PE, 2D network
●  Thinking Machines Connection Machine CM-1 (1985)

  64K bit-serial PEs, 512B/PE, 2D + hypercube router
  CM-2: 2048B/PE, plus 2,048 32-bit floating-point units

●  Maspar MP-1 (1989)
  16K 4-bit processors, 16-64KB/PE, 2D + Xnet router
  MP-2: 16K 32-bit processors, 64KB/PE

28 CS758 Prof. David Wood

Shared Instruction: SIMD Architecture

●  Central controller broadcasts instructions to multiple
processing elements (PEs)

Array
Controller

Inter-PE Connection Network

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

Control
Data

•  Only requires one controller for whole array

•  Only requires storage for one copy of program

•  All computations fully synchronized

15

29 CS758 Prof. David Wood

Cray-1 (1976)

●  First successful supercomputers

30 CS758 Prof. David Wood

Cray-1 (1976)

Single Port
Memory

16 banks of 64-
bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
T Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length 64 Element
Vector Registers

16

31 CS758 Prof. David Wood

Vector Instruction Execution

IF ID EX WB

EX IF ID EX WB

EX IF ID EX WB

EX IF ID EX WB

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Successive
instructions

32 CS758 Prof. David Wood

Vector Instruction Execution
VADD C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

17

33 CS758 Prof. David Wood

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

34 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

18

35 CS758 Prof. David Wood

Shared Sequencer
VLIW: Very Long Instruction Word

●  Compiler schedules parallel execution
●  Multiple parallel operations packed into one long

instruction word
●  Compiler must avoid data hazards (no interlocks)

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Two Floating-Point Units,
Four Cycle Latency

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2

36 CS758 Prof. David Wood

VLIW Instruction Execution

IF ID EX WB

1 2 3 4 5 6

Cycles

EX
EX

IF ID EX WB
EX
EX

IF ID EX WB
EX
EX

VLIW execution with degree = 3

Successive
instructions

19

37 CS758 Prof. David Wood

ILP Datapath Hardware Scaling
●  Replicating functional units and cache/

memory banks is straightforward and
scales linearly

●  Register file ports and bypass logic for N
functional units scale quadratically (N*N)

●  Memory interconnection among N
functional units and memory banks also
scales quadratically

●  (For large N, could try O(N logN)
interconnect schemes)

●  Technology scaling: Wires are getting
even slower relative to gate delays

●  Complex interconnect adds latency as
well as area

●  => Need greater parallelism to hide
latencies

Register File

Memory Interconnect

Multiple
Functional

Units

Multiple Cache/
Memory Banks

38 CS758 Prof. David Wood

Clustered VLIW
●  Divide machine into clusters of local

register files and local functional units
●  Lower bandwidth/higher latency

interconnect between clusters
●  Software responsible for mapping

computations to minimize
communication overhead

Cluster
Interconnect

Local
Regfile

Local
Regfile

Memory Interconnect

Multiple Cache/
Memory Banks

Cluster

20

39 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

40 CS758 Prof. David Wood

Shared Network: Message Passing MPPs
(Massively Parallel Processors)

●  Initial Research Projects
  Caltech Cosmic Cube (early 1980s) using custom Mosaic processors

●  Commercial Microprocessors including MPP Support
  Transputer (1985)
  nCube-1(1986) /nCube-2 (1990)

●  Standard Microprocessors + Network Interfaces
  Intel Paragon (i860)
  TMC CM-5 (SPARC)
  Meiko CS-2 (SPARC)
  IBM SP-2 (RS/6000)

●  MPP Vector Supers
  Fujitsu VPP series

µP

Mem

NI

Interconnect Network

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

Designs scale to 100s or
1000s of nodes

21

41 CS758 Prof. David Wood

Message Passing MPP Problems

●  All data layout must be handled by software
  cannot retrieve remote data except with message

request/reply
●  Message passing has high software overhead

  early machines had to invoke OS on each message
(100µs-1ms/message)

  even user level access to network interface has dozens
of cycles overhead (NI might be on I/O bus)

  sending messages can be cheap (just like stores)
  receiving messages is expensive, need to poll or

interrupt

42 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

22

43 CS758 Prof. David Wood

Shared Memory:
Shared Memory Multiprocessors

●  Will work with any data placement (but might be slow)
  can choose to optimize only critical portions of code

●  Load and store instructions used to communicate data between
processes
  no OS involvement
  low software overhead

●  Usually some special synchronization primitives
  fetch&op
  load linked/store conditional

●  In large scale systems, the logically shared memory is implemented
as physically distributed memory modules

●  Two main categories
  non cache coherent
  hardware cache coherent

44 CS758 Prof. David Wood

Shared Memory:
Shared Memory Multiprocessors

●  No hardware cache coherence
  IBM RP3
  BBN Butterfly
  Cray T3D/T3E
  Parallel vector supercomputers (Cray T90, NEC SX-5)

●  Hardware cache coherence
  many small-scale SMPs (e.g. Quad Pentium Xeon systems)
  large scale bus/crossbar-based SMPs (Sun Starfire)
  large scale directory-based SMPs (SGI Origin)

23

45 CS758 Prof. David Wood

Cray T3E

●  Each node has 256MB-2GB local DRAM memory
●  Load and stores access global memory over network
●  Only local memory cached by on-chip caches
●  Alpha microprocessor surrounded by custom “shell” circuitry to make it into

effective MPP node. Shell provides:
  multiple stream buffers instead of board-level (L3) cache
  external copy of on-chip cache tags to check against remote writes to local

memory, generates on-chip invalidates on match
  512 external E registers (asynchronous vector load/store engine)
  address management to allow all of external physical memory to be addressed
  atomic memory operations (fetch&op)
  support for hardware barriers/eureka to synchronize parallel tasks

•  Up to 2048 600MHz Alpha 21164
processors connected in 3D torus

46 CS758 Prof. David Wood

HW Cache Cohernecy
●  Bus-based Snooping Solution

  Send all requests for data to all processors
  Processors snoop to see if they have a copy and respond accordingly
  Requires broadcast, since caching information is at processors
  Works well with bus (natural broadcast medium)
  Dominates for small scale machines (most of the market)

●  Directory-Based Schemes
  Keep track of what is being shared in 1 centralized place (logically)
  Distributed memory => distributed directory for scalability

(avoids bottlenecks)
  Send point-to-point requests to processors via network
  Scales better than Snooping
  Actually existed BEFORE Snooping-based schemes

24

47 CS758 Prof. David Wood

Bus-Based Cache-Coherent SMPs

●  Small scale (<= 4 processors) bus-based SMPs by far the
most common parallel processing platform today

●  Bus provides broadcast and serialization point for simple
snooping cache coherence protocol

●  Modern microprocessors integrate support for this protocol

µP

$

µP

$

µP

$

µP

$

Central
Memory

Bus

48 CS758 Prof. David Wood

Sun Starfire (UE10000)

16x16 Data Crossbar

Memory
Module

Board Interconnect

µP

$

µP

$

µP

$

µP

$

Memory
Module

Board Interconnect

µP

$

µP

$

µP

$

µP

$

4 processors + memory
module per system

board

•  Up to 64-way SMP using bus-based snooping protocol

Separate data
transfer over

high bandwidth
crossbar

Uses 4 interleaved
address busses to
scale snooping
protocol

25

49 CS758 Prof. David Wood

SGI Origin 2000

Scalable hypercube switching network
supports up to 64 two-processor nodes (128

processors total)

(Some installations up to 512 processors)

•  Large scale distributed directory SMP

•  Scales from 2 processor workstation
to 512 processor supercomputer

 Node contains:
•  Two MIPS R10000 processors plus caches
•  Memory module including directory
•  Connection to global network
•  Connection to I/O

50 CS758 Prof. David Wood

Outline

●  Implicit Parallelism: Superscalar Processors
●  Explicit Parallelism
●  Shared Pipeline Processors
●  Shared Instruction Processors
●  Shared Sequencer Processors
●  Shared Network Processors
●  Shared Memory Processors
●  Multicore Processors

26

51 CS758 Prof. David Wood

Phases in “VLSI” Generation

multicore

52 CS758 Prof. David Wood

1985 1990 1980 1970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Ambric
AM2045

Multicores

4004

8008

8086 8080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2 Athlon

27

53 CS758 Prof. David Wood

Multicores

●  Shared Memory
  Intel Yonah, AMD Opteron
  IBM Power 5 & 6
  Sun Niagara

●  Shared Network
  MIT Raw
  Cell

●  Crippled or Mini cores
  Intel Tflops
  Picochip

54 CS758 Prof. David Wood

Shared Memory Multicores:
Evolution Path for Current Multicore Processors

●  IBM Power5
  Shared 1.92 Mbyte L2

cache
●  AMD Opteron

  Separate 1 Mbyte L2
caches

  CPU0 and CPU1
communicate through
the SRQ

●  Intel Pentium 4
  “Glued” two processors

together

28

55 CS758 Prof. David Wood

CMP: Multiprocessors On One Chip
●  By placing multiple processors, their memories and the IN all on one

chip, the latencies of chip-to-chip communication are drastically
reduced
  ARM multi-chip core

Snoop Control Unit

CPU
L1$s

CPU
L1$s

CPU
L1$s

CPU
L1$s

Interrupt Distributor

CPU
Interface

CPU
Interface

CPU
Interface

CPU
Interface

Per-CPU
aliased
peripherals

Configurable
between 1 & 4
symmetric
CPUs

Private
peripheral

bus

Configurable #
of hardware intr

Primary AXI R/W 64-b bus Optional AXI R/W 64-b bus

I & D
64-b bus

CCB

Private IRQ

56 CS758 Prof. David Wood

Shared Network Multicores:
The MIT Raw Processor

•  16 Flops/ops per cycle
•  208 Operand Routes / cycle
•  2048 KB L1 SRAM

Static
Router
 Fetch Unit

Compute
Processor
Fetch Unit

Compute
Processor
Data Cache

29

57 CS758 Prof. David Wood

Raw’s three on-chip mesh networks

MIPS-Style
Pipeline

Registered at input  longest wire = length of tile

(225 Gb/s @ 225 Mhz)

8 32-bit buses

58 CS758 Prof. David Wood

Shared Network Multicore:
The Cell Processor

●  IBM/Toshiba/Sony joint project - 4-5
years, 400 designers
  234 million transistors, 4+ Ghz
  256 Gflops (billions of floating pointer

operations per second)

●  One 64-bit PowerPC processor
  4+ Ghz, dual issue, two threads
  512 kB of second-level cache

●  Eight Synergistic Processor Elements
  Or “Streaming Processor Elements”
  Co-processors with dedicated 256kB

of memory (not cache)
●  IO

  Dual Rambus XDR memory
controllers (on chip)
–  25.6 GB/sec of memory bandwidth

  76.8 GB/s chip-to-chip bandwidth (to
off-chip GPU)

P
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

M
I
C

R
R
A
C

B
I
C

MIB

30

59 CS758 Prof. David Wood

Mini-core Multicores: PicoChip Processor

●  Array of 322 processing elements
●  16-bit RISC
●  3-way LIW
●  4 processor variants:

  240 standard (MAC)
  64 memory
  4 control (+ instr. mem.)
  14 function accellerators

I/O

I/O I/O

I/O

External Memory

Array Processing Element

Switch Matrix

Inter-picoArray Interface

60 CS758 Prof. David Wood

Conclusions

●  Era of programmers not caring about what is under
the hood is over

●  A lot of variations/choices in hardware
●  Many will have performance implications
●  Understanding the hardware will make it easier to

make programs get high performance
●  A note of caution: If program is too closely tied to the

processor  cannot port or migrate
  back to the era of assembly programming

