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Introduction to Parallel Architectures 

To learn more, take CS757 

Slides adapted from Saman Amarasinghe 
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Implicit vs. Explicit Parallelism 

Implicit Explicit 

Hardware Compiler 

Superscalar 
Processors Explicitly Parallel Architectures 
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Implicit Parallelism: Superscalar 
Processors 

●  Issue varying numbers of instructions per clock 
  statically scheduled  

–  using compiler techniques 
–  in-order execution 

  dynamically scheduled 
–  Extracting ILP by examining 100’s of instructions  
–  Scheduling them in parallel as operands become available 
–  Rename registers to eliminate anti dependences 
–  out-of-order execution 
–  Speculative execution 
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Pipelining Execution 

Instruction i IF ID EX WB 

IF ID EX WB 

IF ID EX WB 

IF ID EX WB 

IF ID EX WB 

Instruction i+1 

Instruction i+2 

Instruction i+3 

Instruction i+4 

Instruction # 1 2 3 4 5 6 7 8 

Cycles 

IF: Instruction fetch  ID : Instruction decode 
EX : Execution   WB : Write back 
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Super-Scalar Execution 

Integer IF ID EX WB 

Instruction type 1 2 3 4 5 6 7 

Cycles 

Floating point IF ID EX WB 
Integer 

Floating point 
Integer 

Floating point 
Integer 

Floating point 

IF ID EX WB 
IF ID EX WB 

IF ID EX WB 
IF ID EX WB 

IF ID EX WB 
IF ID EX WB 

2-issue super-scalar machine 
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Data Dependence and Hazards 

●  InstrJ is data dependent (aka true dependence) on 
InstrI:  
   

   

●  If two instructions are data dependent, they cannot 
execute simultaneously, be completely overlapped 
or execute in out-of-order  

●  If data dependence caused a hazard in pipeline,  
called a Read After Write (RAW) hazard  

I: add r1,r2,r3 
J: sub r4,r1,r3 
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ILP and Data Dependencies, Hazards 

●  HW/SW must preserve program order:  
order instructions would execute in if executed 
sequentially as determined by original source 
program 
  Dependences are a property of programs 

●  Importance of the data dependencies 
  1) indicates the possibility of a hazard 
  2) determines order in which results must be calculated 
  3) sets an upper bound on how much parallelism can 

possibly be exploited 
●  Goal: exploit parallelism by preserving program 

order only where it affects the outcome of the 
program 
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Name Dependence #1: Anti-dependence 

●  Name dependence: when 2 instructions use same 
register or memory location, called a name, but no 
flow of data between the instructions associated with 
that name; 2 versions of name dependence 

●  InstrJ writes operand before InstrI reads it 

Called an “anti-dependence” by compiler writers. 
This results from reuse of the name “r1” 

●  If anti-dependence caused a hazard in the pipeline, 
called a Write After Read (WAR) hazard 

I: sub r4,r1,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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Name Dependence #2: Output dependence 

●  InstrJ writes operand before InstrI writes it. 

●  Called an “output dependence” by compiler writers. 
This also results from the reuse of name “r1” 

●  If anti-dependence caused a hazard in the pipeline, called a Write 
After Write (WAW) hazard 

●  Instructions involved in a name dependence can execute 
simultaneously if name used in instructions is changed so 
instructions do not conflict 
  Register renaming resolves name dependence for registers 
  Renaming can be done either by compiler or by HW 

I: sub r1,r4,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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Control Dependencies 
●  Every instruction is control dependent on some set of branches, 

and, in general, these control dependencies must be preserved to 
preserve program order 

–  if p1 { 
–   S1; 
–  }; 
–  if p2  
–   S2; 
–  } 

●  S1 is control dependent on p1, and S2 is control dependent on p2 
but not on p1. 

●  Control dependence need not be preserved 
  willing to execute instructions that should not have been executed, 

thereby violating the control dependences, if can do so without affecting 
correctness of the program  

●  Speculative Execution 
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Speculation 

●  Greater ILP: Overcome control dependence by 
hardware speculating on outcome of branches and 
executing program as if guesses were correct 
  Speculation ⇒ fetch, issue, and execute instructions as 

if branch predictions were always correct  
  Dynamic scheduling ⇒ only fetches and issues 

instructions 
●  Essentially a data flow execution model: Operations 

execute as soon as their operands are available
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Speculation Rampant in Modern Superscalars 

●  Different predictors 
  Branch Prediction 
  Value Prediction 
  Prefetching (memory access pattern prediction)  

●  Inefficient 
  Predictions can go wrong 
  Has to flush out wrongly predicted data 
  Wrong predictions consume power 
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Today’s CPU Architecture: 
Heat becoming an unmanageable problem 

Intel Developer Forum, Spring 2004 - Pat Gelsinger 
 (Pentium at 90 W) 

Cube relationship between the cycle time and power. 



8 

15 CS758 Prof. David Wood 

Pentium-IV 

●  Pipelined 
  minimum of 11 stages for any 

instruction 
●  Instruction-Level Parallelism  

  Can execute up to 3 x86 
instructions per cycle 

●  Data Parallel Instructions 
  MMX (64-bit) and SSE (128-

bit) extensions provide short 
vector support 

●  Thread-Level Parallelism at 
System Level 
  Bus architecture supports 

shared memory 
multiprocessing 
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Explicit Parallel Processors 

●  Parallelism is exposed to software 
  Compiler or Programmer 

●  Many different forms 
  Loosely coupled Multiprocessors to tightly coupled VLIW 
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Little’s Law 

●  Parallelism = Throughput * Latency 
●  To maintain throughput T/cycle when each operation has latency L 

cycles, need T*L independent operations 
●  For fixed parallelism: 

   decreased latency allows increased throughput 
   decreased throughput allows increased latency tolerance 

Latency in Cycles 

Throughput per Cycle 

One Operation 
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Types of Parallelism 

Data-Level Parallelism (DLP) 

Ti
m

e 

Ti
m

e 

Thread-Level Parallelism (TLP) 

Ti
m

e 

Instruction-Level Parallelism (ILP) 

Pipelining 

Ti
m

e 
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Issues in Parallel Machine Design 

●  Communication 
  how do parallel operations communicate data results? 

●  Synchronization 
  how are parallel operations coordinated? 

●  Resource Management 
  how are a large number of parallel tasks scheduled onto finite 

hardware? 

●  Scalability 
  how large a machine can be built? 
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Flynn’s Classification (1966) 
●  Broad classification of parallel computing systems based on number 

of instruction and data streams 
●  SISD: Single Instruction, Single Data 

  conventional uniprocessor 
●  SIMD: Single Instruction, Multiple Data 

  one instruction stream, multiple data paths 
  distributed memory SIMD (MPP, DAP, CM-1&2, Maspar) 
  shared memory SIMD (STARAN, vector computers) 

●  MIMD: Multiple Instruction, Multiple Data 
  message passing machines (Transputers, nCube, CM-5) 
  non-cache-coherent shared memory machines (BBN Butterfly, T3D) 
  cache-coherent shared memory machines (Sequent, Sun Starfire, SGI 

Origin) 
●  MISD: Multiple Instruction, Single Data 

  no commercial examples 
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Saman’s Classification++ 

●  By the level of sharing 
  Shared Pipeline 
  Shared Instruction 
  Shared Sequencer 
  Shared Memory 
  Shared Network 



12 

23 CS758 Prof. David Wood 

Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Shared Pipeline (aka SMT) 

•  Time evolution of issue slots 
•  Color = thread (white is idle) 

CGMT FGMT SMT 
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25  

SMT creates MLP  
●  Off-Chip Misses are now hundreds of cycles 
●  Limits ILP 

●  Multiple instruction streams creates memory-level parallelism (MLP) 

Time  


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s 

I1 
I2 

I3 
I4 

window = 4 (64) 

Overlaps 
cache misses 

Time  


 In
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Shared Instruction: SIMD Machines 
●  Illiac IV (1972) 

  64 64-bit PEs, 16KB/PE, 2D network 
●  Goodyear STARAN (1972) 

  256 bit-serial associative PEs, 32B/PE, multistage network 
●  ICL DAP (Distributed Array Processor) (1980)   

  4K bit-serial PEs, 512B/PE, 2D network 
●  Goodyear MPP (Massively Parallel Processor) (1982) 

  16K bit-serial PEs, 128B/PE, 2D network 
●  Thinking Machines Connection Machine CM-1 (1985) 

  64K bit-serial PEs, 512B/PE, 2D + hypercube router 
  CM-2: 2048B/PE, plus 2,048 32-bit floating-point units 

●  Maspar MP-1 (1989) 
  16K 4-bit processors, 16-64KB/PE, 2D + Xnet router  
  MP-2: 16K 32-bit processors, 64KB/PE 
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Shared Instruction: SIMD Architecture 

●  Central controller broadcasts instructions to multiple 
processing elements (PEs) 

Array 
Controller 

Inter-PE Connection Network 

PE 

M
e
m 

PE 

M
e
m 

PE 

M
e
m 

PE 

M
e
m 

PE 

M
e
m 

PE 

M
e
m 

PE 

M
e
m 

PE 

M
e
m 

Control 
Data 

•  Only requires one controller for whole array 

•  Only requires storage for one copy of program 

•  All computations fully synchronized 
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Cray-1 (1976) 

●  First successful supercomputers 
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Cray-1 (1976) 

Single Port 
Memory 

16 banks of 64-
bit words 

+  
8-bit SECDED 

80MW/sec data 
load/store 

320MW/sec 
instruction 
buffer refill 

4 Instruction Buffers 

64-bitx16 NIP 

LIP 

CIP 

(A0) 

( (Ah) + j k m ) 

64 
T Regs 

(A0) 

( (Ah) + j k m ) 

64  
T Regs 

S0 
S1 
S2 
S3 
S4 
S5 
S6 
S7 

A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

Si 

Tjk 

Ai 

Bjk 

FP Add 
FP Mul 
FP Recip 

Int Add 
Int Logic 
Int Shift 
Pop Cnt 

Sj 

Si 

Sk 

Addr Add 
Addr Mul 

Aj 

Ai 

Ak 

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz) 

V0 
V1 
V2 
V3 
V4 
V5 
V6 
V7 

Vk 

Vj 

Vi V. Mask 

V. Length 64 Element 
Vector Registers 
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Vector Instruction Execution 

IF ID EX WB 

EX IF ID EX WB 

EX IF ID EX WB 

EX IF ID EX WB 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

EX 

Cycles 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Successive 
instructions 
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Vector Instruction Execution 
VADD C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 
A[4] B[4] 
A[5] B[5] 
A[6] B[6] 

C[4] 

C[8] 

C[0] 

A[12] B[12] 
A[16] B[16] 
A[20] B[20] 
A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 
A[17] B[17] 
A[21] B[21] 
A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 
A[18] B[18] 
A[22] B[22] 
A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 
A[19] B[19] 
A[23] B[23] 
A[27] B[27] 

Execution using 
one pipelined 
functional unit 

Execution using 
four pipelined 
functional units 
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Vector Unit Structure 

Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Shared Sequencer  
VLIW: Very Long Instruction Word 

●  Compiler schedules parallel execution 
●  Multiple parallel operations packed into one long 

instruction word 
●  Compiler must avoid data hazards (no interlocks) 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency 

Two Floating-Point Units, 
Four Cycle Latency 

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 
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VLIW Instruction Execution 

IF ID EX WB 

1 2 3 4 5 6 

Cycles 

EX 
EX 

IF ID EX WB 
EX 
EX 

IF ID EX WB 
EX 
EX 

VLIW execution with degree = 3 

Successive 
instructions 
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ILP Datapath Hardware Scaling 
●  Replicating functional units and cache/

memory banks is straightforward and 
scales linearly 

●  Register file ports and bypass logic for N 
functional units scale quadratically (N*N) 

●  Memory interconnection among N 
functional units and memory banks also 
scales quadratically 

●  (For large N, could try O(N logN) 
interconnect schemes) 

●  Technology scaling: Wires are getting 
even slower relative to gate delays 

●  Complex interconnect adds latency as 
well as area 

●  => Need greater parallelism to hide 
latencies 

Register File 

Memory Interconnect 

Multiple 
Functional 

Units 

Multiple Cache/
Memory Banks 
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Clustered VLIW 
●  Divide machine into clusters of local 

register files and local functional units 
●  Lower bandwidth/higher latency 

interconnect between clusters 
●  Software responsible for mapping 

computations to minimize 
communication overhead 

Cluster 
Interconnect  

Local 
Regfile 

Local 
Regfile 

Memory Interconnect 

Multiple Cache/
Memory Banks 

Cluster 
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 

40 CS758 Prof. David Wood 

Shared Network: Message Passing MPPs 
(Massively Parallel Processors) 

●  Initial Research Projects 
  Caltech Cosmic Cube (early 1980s) using custom Mosaic processors 

●  Commercial Microprocessors including MPP Support 
  Transputer (1985) 
  nCube-1(1986) /nCube-2 (1990) 

●  Standard Microprocessors + Network Interfaces 
  Intel Paragon (i860) 
  TMC CM-5 (SPARC) 
  Meiko CS-2 (SPARC) 
  IBM SP-2 (RS/6000) 

●  MPP Vector Supers 
  Fujitsu VPP series 

µP 

Mem 

NI 

Interconnect Network 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

Designs scale to 100s or 
1000s of nodes 
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Message Passing MPP Problems 

●  All data layout must be handled by software 
  cannot retrieve remote data except with message 

request/reply 
●  Message passing has high software overhead 

  early machines had to invoke OS on each message 
(100µs-1ms/message) 

  even user level access to network interface has dozens 
of cycles overhead (NI might be on I/O bus) 

  sending messages can be cheap (just like stores) 
  receiving messages is expensive, need to poll or 

interrupt 
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Shared Memory:  
Shared Memory Multiprocessors 

●  Will work with any data placement (but might be slow) 
  can choose to optimize only critical portions of code 

●  Load and store instructions used to communicate data between 
processes 
  no OS involvement 
  low software overhead 

●  Usually some special synchronization primitives 
  fetch&op 
  load linked/store conditional 

●  In large scale systems, the logically shared memory is implemented 
as physically distributed memory modules 

●  Two main categories 
  non cache coherent 
  hardware cache coherent 
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Shared Memory:  
Shared Memory Multiprocessors 

●  No hardware cache coherence 
  IBM RP3 
  BBN Butterfly 
  Cray T3D/T3E 
  Parallel vector supercomputers (Cray T90, NEC SX-5) 

●  Hardware cache coherence 
  many small-scale SMPs (e.g. Quad Pentium Xeon systems) 
  large scale bus/crossbar-based SMPs (Sun Starfire) 
  large scale directory-based SMPs (SGI Origin) 
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Cray T3E 

●  Each node has 256MB-2GB local DRAM memory 
●  Load and stores access global memory over network 
●  Only local memory cached by on-chip caches 
●  Alpha microprocessor surrounded by custom “shell” circuitry to make it into 

effective MPP node. Shell provides: 
  multiple stream buffers instead of board-level (L3) cache 
  external copy of on-chip cache tags to check against remote writes to local 

memory, generates on-chip invalidates on match 
  512 external E registers (asynchronous vector load/store engine) 
  address management to allow all of external physical memory to be addressed 
  atomic memory operations (fetch&op) 
  support for hardware barriers/eureka to synchronize parallel tasks 

•  Up to 2048 600MHz Alpha 21164 
processors connected in 3D torus 
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HW Cache Cohernecy 
●  Bus-based Snooping Solution 

  Send all requests for data to all processors 
  Processors snoop to see if they have a copy and respond accordingly  
  Requires broadcast, since caching information is at processors 
  Works well with bus (natural broadcast medium) 
  Dominates for small scale machines (most of the market) 

●  Directory-Based Schemes 
  Keep track of what is being shared in 1 centralized place (logically) 
  Distributed memory => distributed directory for scalability 

(avoids bottlenecks) 
  Send point-to-point requests to processors via network 
  Scales better than Snooping 
  Actually existed BEFORE Snooping-based schemes 
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Bus-Based Cache-Coherent SMPs 

●  Small scale (<= 4 processors) bus-based SMPs by far the 
most common parallel processing platform today 

●  Bus provides broadcast and serialization point for simple 
snooping cache coherence protocol 

●  Modern microprocessors integrate support for this protocol 

µP 

$ 

µP 

$ 

µP 

$ 

µP 

$ 

Central 
Memory 

Bus 
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Sun Starfire (UE10000) 

16x16 Data Crossbar 

Memory 
Module 

Board Interconnect 

µP 

$ 

µP 

$ 

µP 

$ 

µP 

$ 

Memory 
Module 

Board Interconnect 

µP 

$ 

µP 

$ 

µP 

$ 

µP 

$ 

4 processors + memory 
module per system 

board 

•  Up to 64-way SMP using bus-based snooping protocol 

Separate data 
transfer over 

high bandwidth 
crossbar 

Uses 4 interleaved 
address busses to 
scale snooping 
protocol 
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SGI Origin 2000 

Scalable hypercube switching network 
supports up to 64 two-processor nodes (128 

processors total) 

(Some installations up to 512 processors) 

•  Large scale distributed directory SMP 

•   Scales from 2 processor workstation 
to 512 processor supercomputer 

 Node contains: 
•  Two MIPS R10000 processors plus caches 
•  Memory module including directory 
•  Connection to global network 
•  Connection to I/O 
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Outline 

●  Implicit Parallelism: Superscalar Processors 
●  Explicit Parallelism 
●  Shared Pipeline Processors 
●  Shared Instruction Processors 
●  Shared Sequencer Processors 
●  Shared Network Processors 
●  Shared Memory Processors 
●  Multicore Processors 
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Phases in “VLSI” Generation 

multicore 
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1985 1990 1980 1970 1975 1995 2000 2005 

Raw 

Power4 
Opteron 

Power6 

Niagara 

Yonah 
PExtreme 

Tanglewood 

Cell 

Intel 
Tflops 

Xbox360 

Cavium 
Octeon 

Raza 
XLR 

PA-8800  

Cisco 
CSR-1 

Picochip 
PC102 

Boardcom 1480 

20?? 

# of 
cores 

1 

2 

4 

8 

16 

32 

64 

128 
256 

512 

Opteron 4P 
Xeon MP 

Ambric 
AM2045 

Multicores 

4004 

8008 

8086 8080 286 386 486 Pentium P2 P3 
P4 
Itanium 

Itanium 2 Athlon 
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Multicores 

●  Shared Memory 
  Intel Yonah, AMD Opteron  
  IBM Power 5 & 6 
  Sun Niagara 

●  Shared Network 
  MIT Raw 
  Cell 

●  Crippled or Mini cores 
  Intel Tflops 
  Picochip 
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Shared Memory Multicores: 
Evolution Path for Current Multicore Processors 

●  IBM Power5 
  Shared 1.92 Mbyte L2 

cache 
●  AMD Opteron 

  Separate 1 Mbyte L2 
caches 

  CPU0 and CPU1 
communicate through 
the SRQ 

●  Intel Pentium 4 
  “Glued” two processors 

together 
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CMP:  Multiprocessors On One Chip 
●  By placing multiple processors, their memories and the IN all on one 

chip, the latencies of chip-to-chip communication are drastically 
reduced 
  ARM multi-chip core 

Snoop Control Unit 

CPU 
L1$s 

CPU 
L1$s 

CPU 
L1$s 

CPU 
L1$s 

Interrupt Distributor 

CPU 
Interface 

CPU 
Interface 

CPU 
Interface 

CPU 
Interface 

Per-CPU 
aliased 
peripherals 

Configurable 
between 1 & 4 
symmetric 
CPUs 

Private 
peripheral 

bus 

Configurable # 
of hardware intr 

Primary AXI R/W 64-b bus Optional AXI R/W 64-b bus 

I & D 
64-b bus 

CCB 

Private IRQ 
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Shared Network Multicores:  
The MIT Raw Processor 

•   16 Flops/ops per cycle 
•   208 Operand Routes / cycle 
•   2048 KB L1 SRAM 

Static 
Router 
 Fetch Unit 

Compute 
Processor  
Fetch Unit 

Compute 
Processor 
Data  Cache 
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Raw’s three on-chip mesh networks 

MIPS-Style 
Pipeline 

Registered at input   longest wire = length of tile 

(225 Gb/s @ 225 Mhz) 

8 32-bit buses 
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Shared Network Multicore:  
The Cell Processor 

●  IBM/Toshiba/Sony joint project - 4-5 
years, 400 designers 
  234 million transistors, 4+ Ghz 
  256 Gflops (billions of floating pointer 

operations per second) 

●  One 64-bit PowerPC processor 
  4+ Ghz, dual issue, two threads 
  512 kB of second-level cache 

●  Eight Synergistic Processor Elements 
  Or “Streaming Processor Elements” 
  Co-processors with dedicated 256kB 

of memory (not cache) 
●  IO 

  Dual Rambus XDR memory 
controllers (on chip) 
–  25.6 GB/sec of memory bandwidth 

  76.8 GB/s chip-to-chip bandwidth (to 
off-chip GPU) 

P 
P 
U 

S 
P 
U 

S 
P 
U 

S 
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R 
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MIB 
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Mini-core Multicores: PicoChip Processor 

●  Array of 322 processing elements 
●  16-bit RISC 
●  3-way LIW 
●  4 processor variants: 

  240 standard (MAC) 
  64 memory 
  4 control (+ instr. mem.) 
  14 function accellerators 

I/O 

I/O I/O 

I/O 

External Memory 

Array Processing Element 

Switch Matrix 

Inter-picoArray Interface 
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Conclusions 

●  Era of programmers not caring about what is under 
the hood is over 

●  A lot of variations/choices in hardware 
●  Many will have performance implications  
●  Understanding the hardware will make it easier to 

make programs get high performance 
●  A note of caution: If program is too closely tied to the 

processor  cannot port or migrate  
  back to the era of assembly programming 


