Would You Like Some Syntactic Sugar With Your TBB?

Evan Driscoll

December 20, 2007

Abstract

We have begun implementation on a source-to-source
transformer that greatly eases the burden of writing
code that uses Intel Thread Building Blocks (TBB).
TBB is a C++ library that provides a parallel pro-
gramming interface that is at a higher level than
raw threads. However, because it works within the
bounds of standard C++, there is a lot of syntactic
overhead involved with writing a TBB application.
We take a step back and show that the interface could
be made far nicer if one is willing to forgo this need,
and allow an extra preprocessing step.

1 Introduction

It is a well known fact that single-threaded perfor-
mance of microprocessors has ceased the rapid in-
crease of the past. Chip manufacturers are spending
the additional transistors afforded by today’s tech-
nologies to build multicore chips. Programmers who
wish to continue to benefit from Moore’s Law must
create programs which can operate in parallel on
these separate cores.

However, parallel programming is a hard program-
ming. Many programming models and systems have
been created in an attempt to ease the burden on
the programmer, allowing them to think at a higher
level. One such system is Intel’s Thread Building
Blocks (TBB) [3].

TBB is a C++ library that provides a fairly-high
level model of concurrency. It comprises a set of C++
classes that allow parallel code to be expressed in
several different ways, as well as some supporting li-
braries such as concurrent data structures and atomic
types that have even broader applicability.

However, TBB has one substantial problem, which
is that the syntactic overhead of using TBB is rather
high. This limitation is imposed by the fact that TBB
is simply a C++ library, and doesn’t extend the lan-
guage. This has the great benefit that it can theoret-

ically be used with any C++ compiler (Intel most
directly supports the Intel compiler, GNU’s GCC,
and Microsoft’s C++ compiler), but it also makes
other solutions look better in comparison, especially
OpenMP [2] and Cilk [9].

The objections to TBB syntax take one of two
forms. First, TBB uses some fairly advanced parts
of C++ and exposes the programmer to them. To
use TBB forces the programmer to use templates, op-
erator overloading, and for task-based programming,
even placement new. We argue this is not a par-
ticularly strong objection however. Experience with
these bits of C++ will make the programmer com-
fortable enough that these syntactic warts cause little
more than an eye roll.

The second objection to the syntax is much more
important and much more difficult to deal with.
When parallelizing a loop, it is necessary to take the
loop body and implement it as a method inside a
class. This has two consequences: the programmer
has to write a ton of boilerplate code (since the loop
body no longer has access to the local variables of
the original function, these have to be duplicated in
— then copied into — the new class) and the loop
body is now lexically separated from the function it
was previously irﬂ

In this paper, we extend C++ with new language
features for expressing parallelism. The new language
features mostly eliminate the syntactic overhead of
TBB, which should make it much easier to program
and much easier to use with existing programs. We
implement a prototype tool, called tbbetter for trans-
lating the extended language to pure C++ for com-
pilation by any back end compiler.

1In TBB’s defense, it should be noted that programming
with traditional threads libraries, such as pthreads, produces
more or less the same objections. The loop body must still be
split into a function, and, if it needs more than one argument,
the programmer must write a struct to pass all of the data
in. In the typical case, TBB may be ahead of pthreads with
respect to amount of boilerplate, since the programmer doesn’t
have to explicitly create threads. These objections take weight
when TBB is compared to other models, such as OpenMP.

The organization of the paper proceeds as follows.
Section[2] will provide an overview of the TBB library,
and contrast it with other systems. Section [3] covers
our language extensions, describing the syntax and
semantics of the additions. Section [4] provides an ex-
ample program excerpt demonstrating the benefit of
our extensions. Section [b| discusses the prototype im-
plementation. Section [f] discusses some attributes of
our solution. Section [§ concludes.

2 TBB Overview

At a high level, the highlights of the TBB library are:
1. Loop-based components
2. Task-based components

Stream programming components

Concurrent containers

Cache-aware concurrent memory allocators

S vk W

Communication primitives (locks and atomic
types)

The latter three components can be viewed as sup-
porting libraries for inter-thread communication, and
would actually likely be useful even if a different
mechanism were used to express parallelism. For in-
stance, even when using threads directly it would of-
ten be useful to have a concurrent hash table. These
components are not of particular interest for this
project; the syntax for them is not particularly lack-
ing.

It is the first three components where TBB stands
to improve. It is also where TBB most stands above
other offerings. Even a traditional thread library,
such as pthreads, wouldn’t be much if there wasn’t
synchronization primitives for instance. The first
three components however provide a substantially
different interface for expressing what can be exe-
cuted in parallel. Furthermore, behind what the pro-
grammer enters is a task stealing thread scheduler
that provides high potential for runtime performance
gains that would require a lot of extra work if the pro-
grammer used a traditional threads library instead.

We have considered the portions of these compo-
nents which we have used during class, and tried
to produce improved syntax for those portions. We
haven’t programmed using the stream components,
but the following sections cover the first two compo-
nents in more detail.

2.1 Loop-based components

The loop-based components abstract tasks that
are traditionally performed in loops. There
are four classes which fall into this category:
parallel for, parallel_while, parallel_reduce,
and parallel_scan.

This paper mostly focuses on parallel_while; for
reasons that are explained later this section, this is
probably the most egregious syntactic wart in all of
TBB, so it is the component that stands to improve
the most. We also describe syntax for an improved
interface for parallel_for.

The author hasn’t used either parallel_reduce or
parallel_scan, so these were not addressed in this
work. However, there is no reason why a more serious
project would not be able to develop similar exten-
sions for these loops. In particular, parallel_reduce
implements a parallel reduction (for instance, find-
ing the sum of an array, or the extreme elements of
an array). Throughout this paper OpenMP will be
mentioned as a source for some inspiration, and this
is a prime example of where lessons could be learned;
OpenMP also provides a mechanism for parallel re-
ductions. parallel_scan seems fairly limited to ap-
plicability, and in fact the TBB tutorial doesn’t even
cover it.

The remaining two constructs, parallel for and
parallel while, are discussed in the following sec-
tions.

2.1.1 parallel_for

To transform a for loop into one that wuses
parallel for, the programmer follows a series of
steps. At a high level, he implements a new class
that contains a method which performs some num-
ber of iterations of the loop, the bounds of which are
passed as a parameter to the method. One invocation
of the method usually performs a couple hundred to
some thousands of iterations of the original loop. If it
performs too few iterations, the overhead of schedul-
ing and task management becomes overwhelming. If
it performs too many, there could be load imbalance
issues as the tasks contain differing amounts of work,
or there may even be too little parallelism.

Using parallel_for is appropriate when there are
no loop carried dependencies and the number of iter-
ations performed can be determined before the loop
begins. (Unfortunately, functions such as strlen
can’t really be implemented. Consider a very simple
version that loops over the array until the terminating

zero is found. While there are no loop-carried data
dependencies, there is a control dependence from it-
eration ¢ to ¢ + 1 — if iteration ¢ discovers the zero,
iteration ¢ + 1 cannot safely run or it risks a buffer
overflow.) In some cases where parallel_for cannot
be used, parallel_while can.

The use of parallel for bears a lot of rela-
tion to the #pragma parallel for construct in
OpenMP [2]. Both are used for programming loops
that are usually most naturally expressed as for
loops, and both have somewhat similar restrictions
on what loops they can parallelize. Some options
that are present in OpenMP — for instance stati-
cally allocating iterations to the threads — are not
available in TBB, and others — such as which vari-
ables are local and which are shared — is expressed
through the way the body class is coded instead of
the declarative style of OpenMP. On the other hand,
TBB is in other senses more flexible. The iteration
bounds needn’t be simple integers, and TBB provides
a class that will allow easy iteration over a 2-D array
without nested parallel_for loops, something that
in OpenMP would require extra code.

2.1.2 parallel while

The model of parallel_while is a bit different from
that of parallel for. It is appropriate to use
parallel while when the work that a loop carries
out can be though of as having two parts: one part
runs sequentially and produces work to be done, and
the second part actually performs that work. In-
tel refers to the two parts as the “stream” and the
“body”; this paper uses “generator” to refer to the
first part instead. Later we will see in detail an ex-
ample from an Othello Al that can be parallelized
nicely with parallel while. When parallelized, the
generator pulls a move that should be evaluated off
of the beginning of a list of possible moves; the body
applies that move to the current board position and
evaluates the new position, either by continuing the
walk of the decision tree or by direct evaluation.
The reason that parallel while is the worst of-
fender syntactically is because the generator and
body portions of the loop both have to be imple-
mented in separate methods. In practice, they are
often in different classes as well; the TBB tutorial
uses this technique. Thus the problems mentioned in
the introduction are doubled in severity. Since there
are two classes, there is twice as much boilerplate to
write. Furthermore, not only is the loop body lexi-
cally separate from the function it used to be in, but

what used to be one body has now been separated
into two functions across two classes!

Section [4] and the appendix provide an example
from an Othello Al that uses parallel while, which
should make these objections concrete.

2.2 Task-based components

TBB provides a task class for performing task-based
parallelism. Conceptually this is very similar to the
language Cilk [9], which is an extension to C. Task-
based programming seemingly maps most comfort-
ably to tasks which would be written recursively if
they were in a pure sequential language. The canoni-
cal example, used both in the TBB tutorial and Cilk
manual as a demonstration of task-based parallelism,
is a recursive computation of the Fibonacci series.
More practically, we wrote a task-based parallel ver-
sion of the Othello AI, which is a recursive walk over
the tree of possible moves from a given board po-
sition. TBB tasks support both explicit continua-
tion passing style (CPS) programs as well as blocking
tasks; this is much the same as Cilk.

If parallel while is the most egregious example
of poor TBB syntax, their task-based programming
must be the least. Because the tasks in task-based
parallelism are usually invocations of a recursive func-
tion anyway, the problem where the programmer has
to pull code from where it is and put it in its own
function doesn’t exist. There is still boilerplate to
write: because the task’s execute method doesn’t
take parameters, what would normally be parame-
ters must again be stored as member variables. How-
ever, there is typically less than in the case of a
parallel loop since there are likely fewer parameters
than local variables accessed from within the loop.
While parallel _while could be called a coding hor-
ror, TBB tasks are not much more than coding an-
noyances.

However, there is still room for improvement.
Tasks are where the low-level syntax of TBB actually
becomes an issue. There is a fair mess of easy-to-get-
wrong details when programming with this part of
the library; we will give two examples. First, task
objects contain a reference count that is used by the
scheduler to know when to either reactivate a blocked
task or run its continuation. Under the current sys-
tem, the programmer must explicitly set this refer-
ence count. However, from the examples that we’ve
seen, it seems that this usually could be fairly eas-
ily be determined automatically. (In fact, the au-
thor is surprised that the library doesn’t track it al-

ready.) Assuming there is no subtlety here and this
is actually the case, this is perfect room for an au-
tomatic transformation. (The one complex bit is if
tasks are created after others have already started
running. The reference count needs to be set before
the first is spawned, so the program would have to
know what tasks are coming up in the future. This
could cause a problem if tasks are created inside a
loop where the number of iterations can’t be deter-
mined statically.)

Second, there are other minor details that make a
lot of difference. The main example of this comes
from the author’s experience converting an initial
task-based Othello AI to one that used CPS. When
converting a recursive function to a task, the recur-
sive invocations turn into a two step process: first
the programmer creates a new task object and fills
in the member variables corresponding to the argu-
ments, and then he spawns the task to begin execu-
tion. When using blocking tasks, the creation of the
child task looks as followsﬂ (taken from [5]):

FibTask& a =
*new(allocate_child())
FibTask(n-1,&x);

When using continuation passing, the first thing that
the programmer has to do is allocate a continuation:

FibContinuation& c =
*new(allocate_continuation())
FibContinuation(sum) ;

However, now any child tasks that are created must
be created as children of the continuation rather than
children of the currently executing task. (This is so
the scheduler wakes the continuation when the chil-
dren are done executing.) Thus the creation of the
children must be changed to:

FibTask& a =
s*new(c.allocate_child())
FibTask(n-1,&c.x);

There are two changes (both of them adding “c.” be-
fore something), but only the second will produce a
compiler error if it is forgotten. TBB’s library could
track this (barring subtleties the author is overlook-
ing), but it doesn’t. The debugging version of the
library it will fail on most violations of this, but even
then it gets the problem wrong, failing an assertion

2Note also the use of placement new here as something that
a language extension would obviate the need for.

with the message “attempt to spawn task whose par-
ent has a ref_count==0 (forgot to set_ref_count?).”
(The reason it fails is because the reference count on
the continuation was set, not the reference count on
the parent task.)

Because of these low-level details, an improvement
to the preset TBB task syntax would still be welcome.
A lot of benefit could be gained even from changes to
the TBB library (for instance, to be either more for-
giving or at least give a better diagnostic in the sec-
ond example above) and possibly some preprocessor
macros, but making the syntax as nice as Cilk would
require a new compilation stage.

3 Language Extension

This section describes our proposed language exten-
sions. We begin with a new variable qualifier for
types, tbb_shared, then cover our extensions for
parallel for, parallel while, and tasks. We then
mention that there is a C++ elision of programs using
our syntax that can be created using only #define
(and so requires no preprocessing other than what C
and C++ perform anyway).

Our parallel for and while loops are spelled
concurrent_for and concurrent_while instead of
parallel for and parallel_while so as not to con-
flict with the TBB names.

3.1

We first add a new qualifier, tbb_shared. This marks
a variable as one that is shared between threads. In
OpenMP, when using a parallel loop such as #pragma
parallel for, the programmer specifies which vari-
ables should be thread-local and which are shared be-
tween threadsﬂ We choose a different approach for
dealing with the same question. By default, all vari-
ables are considered thread-private. Variables that
should be shared are declared with the tbb_shared
qualifier, as in the following definition:

tbb_shared

tbb_shared int nBest;

Note that this makes the fact that it is shared a prop-
erty of the variable rather than specific to a loop.
The decision of whether to take this approach or
one more like OpenMP (which would change the syn-
tax of concurrent _for and concurrent while and
obviate the need for tbb_shared) was not clear. The

31t is also possible to specify a default, then those which
deviate from the default.

OpenMP approach requires the repetition of variable
names at the loop but has the benefit of explicitness.
In addition, it has the property that one variable can
appear as thread-local in one loop but shared in an-
other; whether this is a benefit or not is debatable.
Our approach has conciseness going for it, as well as
the ability to determine whether a variable is shared
or not directly from the declaration. From the stand-
point of a new language, the arguments for neither
side really stands out. However, we have an addi-
tional benefit: our approach makes the C++ elision
of code that uses our loops a little more direct. Nev-
ertheless, it would be possible to change the syntax
of loops to something like the following:

concurrent_while(x>0) with shared(x, y, z)

In addition, presently the tbb_shared qualifier au-
tomatically implies volatile. The intention be-
hind this was that variables that are shared between
threads should almost always be marked volatile any-
way. (This avoids compiler optimizations that can
easily compromise correctness.) Thus the declaration
above is exactly the same as

tbb_shared volatile int nBest;

In our example later (section , the lock object is
shared between threads, so is marked tbb_shared.
However, it is passed to a constructor as an argu-
ment which only takes non-volatile objects. This
necessitates a cast to remove the volatile qualifier.
Also, a large variable (for instance an array) might
be shared for efficiency reasons, but treated read-only
and hence doesn’t need volatile. Because of these
reasons, we now feel that this was not the correct ap-
proach. (It would be a one-line change in the source
to fix this decision.)

Finally, we could have used volatile itself as the
indicator for shared variables, but this seems like a
poor idea.

One further property of our transformation that
deserves mention is that globals variables also need
to be decorated with tbb_shared to be shared. If a
global variable without that qualifier is used within a
loop, it will be thread-local. However, as discussed in
section[6.1] thread-local variables not declared within
the loop body itself are read-only, so a situation can-
not arise where one thread writes to a global variable
G and another works incorrectly because it does not
see that modification.

3.2 concurrent_for

The proposed syntax for concurrent_for is as fol-
lows:

concurrent_for(var, start, end [,grainsize])

e var is the name of the iteration variable, or per-
haps a declaration of it (e.g. int x) with the
qualification that it breaks the C++ elision (see

section

e start is the initial value of the index
e end is the ending value of the index

e grainsize optionally specifies the size of the
range done by each subtask (otherwise it uses
TBB’s auto partitioner)

Currently, concurrent_for only parses in our tool;
no transformation is done.

There are two concessions to make the C++ eli-
sion work well. The first is to use commas as separa-
tors between the clauses instead of semicolons. This
allows each clause to be a macro parameter (with
grainsize taken care of by a variable-length macro
parameter list). The second concession is to break
what is traditionally the first clause (containing some-
thing like i=0) into two parts, the variable and start-
ing index. One problem with it is that if var declares
a variable, the C++ elision won’t work. It would have
been possible to add yet another clause (the type of
var), but we felt that was too unwieldy.

It would have been possible to make the syntax
mostly the same as for with an additional optional
parameter:

concurrent_for(init; cond; incr [,grainsize])

This also would work well enough with the C++ eli-
sion. (The first macro parameter would hold the first
three clauses, then __VA_ARGS__ can pick up the op-
tional grainsize. In fact, this would have fixed the
problem mentioned in the previous paragraph.) How-
ever, we feel that the proposed syntax above has a
couple important benefits. The loops that can be
expressed by parallel_for through a reasonable au-
tomatic process are somewhat limited. In particular,
the loop should look something like the following:

for(int i=start ; i<end ; ++i)

In particular, the loop should initialize the loop vari-
able to some starting value, increment the counter

each iteration, and break when it reaches an end
value. Anything else would require at least some de-
gree of special handling. For instance, counting down
would be difficult to do, and incrementing by more
than one would require special handlingﬂ The syntax
as presented above forces the programmer to confront
this issue and make sure that it fits into this form.
TBB provides mechanisms for extending the abili-
ties above (it is possible to implement a new class to
divide the original range into subranges), and if this
were a much larger project, it might be worthwhile to
provide support for this. However, the present form
probably handles the majority of real-world cases,
and effort would be better spent elsewhere for a while.

3.3

Our adaption of parallel_while introduces
three new keywords, concurrent _while,
cwhile_generator, and cwhile_iterator. A
stylized use looks as follows:

concurrent_while

cwhile_iterator WorkItem nextItem;
concurrent_while(workItemQueue.size() > 0)
{ cwhile_generator {
nextItem = workItemQueue.pop();
}
doWork (nextItem);
}

Recall that parallel_while uses a generator object
to produce work. For each piece of work produced,
the following sequence of events occurs:

1. The generator object checks to see if there is
more work to be done (workItemQueue.size()
> 0)

2. The generator object retrieves the next piece of
work, and puts it into a cwhile_iterator object
(nextItem = workItemQueue.pop())

3. The body object gets the next piece of work from
the iterator object, then performs the work on it
(doWork (nextItem))

4The problem there is that the logic that splits up the over-
all range into smaller ranges makes no guarantees about how
it does it. For instance, say that the loop was originally i+=2,
and went from O through 4. It would be reasonable to split
this into two subranges of 0 through 2 and 3 through 4. But
then the task that got the second subrange would start at 3,
which wouldn’t have been run originally. It’s possible to work
around this, but for this project not worth it.

Code in the condition of the concurrent_while
as well as that which appears within the block an-
notated cwhile_generator will be transformed into
the generator object; the remainder of the body of
the concurrent_while will be transformed into the
body object. (Just as a side note, the braces around
line 4 above could be removed in the same way that
braces can be omitted from single-statement bodies
in conditionals and loops.)

The new qualifier cwhile_iterator marks the
variable which is used to transfer work from the
generator to the body object. It corresponds to
an out parameter in the generator’s pop_if _present
methO(ﬂ and an in parameter in the body’s
operator (), which actually performs the work.

In each concurrent_while there must be exactly
one cwhile generator. Syntactically this can ap-
pear anywhere, but logically it should always be first.
(It wouldn’t be unreasonable to require that it does,
though we don’t.) We also require that there is use of
exactly one variable qualified by cwhile_iterator.

Again, there are a number of interesting design
choices here. First is the method of indicating
what the iterator object is. We seriously consid-
ered a syntax such as concurrent_while(workItem
; workItemQueue.size() > 0), as well as a couple
other alternatives, but decided to keep consistency
with the (equally questionable) decision to make
tbb_shared a qualifier.

A second choice was the method of indicating
what portion of the concurrent while’s body is
meant for the generator object and which portion
is meant for the body object. The first idea was
to use two statement blocks immediately following
the concurrent_while, perhaps marked with anno-
tations:

concurrent_while(workItemQueue.size() > 0)
cwhile_generator {

nextItem = workItemQueue.pop();
}
cwhile_body {

doWork (nextItem) ;
}

However, this idea quickly went out the window when
we made C++ elision an explicit goal, as there is no
way to use macros to “fix up” the above code. The

5This method returns a boolean indication of whether there
is work left — which in our transformation comes from the
condition of the concurrent_while — and, if there is work
available, stores it in the out parameter.

next idea was to just put both of those inside the
body of the concurrent_while:

concurrent_while (workItemQueue.size() > 0)
{ cwhile_generator {

nextItem = workItemQueue.pop();
}
cwhile_body {

doWork (nextItem) ;
}

}

This is an equally viable solution as the one we finally
choose, and has the benefit of being slightly more
explicit about what is going on.

Finally there is just a question of naming;
cwhile_generator and cwhile_iterator are pretty
clunky. We didn’t want to leave off the prefix though,
because just like tbb_shared, both generator and
especially iterator are names that can and do show
up in real code.

All of these alternate syntaxes would be very easy
to change to should the desire arise once one knows
how. The harder part was figuring out all of what
needed changed to make the parsing occur, and the
the transformation and pretty printing code.

3.4 Tasks

For tasks, we basically steal from Cilk [9]. We can
use pretty much the same syntax that they do, up
to what TBB provides support for. A Cilk Fibonacci
number generator looks as follows:

cilk int fib (int n)

{
if (n<2) return n;
else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);
}
}

A transformation for tasks (unimplemented) would
proceed as follows. First, we can key off of the cilk
keyword to know that we should translate this func-
tion into a task object. It would wrap the function
in a class, turning parameters into member variables.
For each spawn occurrence, the translated code would

need to allocate an object, set the member variables,
and then spawn. It would need to determine the
number of such objects that will be created, and set
the reference count automatically. On sync, it would
simply call the sync call within TBB’s task object.
Finally, any call sites to the function that appear else-
where the transformation would need to replace with
code to create a task object and run it. It should be
possible to translate any Cilk program that only uses
basic features into a TBB program using transforma-
tions along this line.

Cilk also includes some more advanced features
that wouldn’t currently translate to TBB. The main
one here is inlets. In Cilk, when a child task com-
pletes execution, it can be told to execute an “
let,” which is essentially a closure that executes in
the context of the parent. Inlets are guaranteed to
execute atomically with respect to other inlets of the
same invocation, so provide a useful method for up-
dating the state of the parent procedure. Perhaps a
more important thing that it does is allow the par-
ent to abort other children. This was inspired by a
problem Blumofe et. al. had in their original Cilk
work ([1]) where a chess AT experienced far worse re-
sults than the other benchmarks. The reason for this
was that the Al was pruning the search space during
the sequential version, but in the parallel version it
would spawn off those tasks before they would get
pruned. Thus the parallel versions were evaluating
far more board positions than the sequential version.
The abort mechanism in inlets was added to compen-
sate for this.

Unfortunately, TBB currently does not have mech-
anisms either for inlets or aborting subtasks. Because
of this there isn’t any transformation we could make
from these Cilk constructs to TBB. However, if sup-
port for aborts was added to TBB in the future, we
are confidant that it would not be hard to find a suit-
able transformation from Cilk to TBB’s hypothetical
mechanisms.

in-

3.5 C++ Elision

One goal we had through most of the development
was to allow for a C++ elision of a program using
our syntax, performable with just the preprocessor.
(This was inspired by the fact that Cilk has the same
property.) By adding #define macros to “define
away” tbb_shared and cwhile_iterator, transform
concurrent_while to just plain while, and perform
a similar transformation for concurrent_for, the re-
sult is a valid C++ program.

This elision will perform the same in terms of cor-
rectness as the parallel version if the parallel version
doesn’t have race conditions.

4 Example

This section will show an example program that uses
our syntax. It is an excerpt from an Othello Al as-
signed as a project earlier in the semester.

The original code which we will parallelize is as
follows:

1 while(moves.size()) {

2 b = board;

3 b.applyMove(moves.front());
4 moves.pop();

5

6 quality = Lookahead(

b, other_color, newdepth);

7

8 if(quality > nBest) {

9 nBest = quality;
10 }

1}

The first thing that we need to do is separate the
generator portion from the body portion. The queue
moves contains a list of moves which we want to con-
sider. On line 3, moves.front() retrieves the next
piece of work, and line 4 updates the moves array,
which needs to be done in the sequential portion. We
need to store the move we want to consider in an it-
erator variable, so we need to tease apart line 3 to do
this. Line 2 doesn’t have anything to do with the cre-
ation of work, so it can be moved later. After these
transformations we have the following:

OthelloMove move;

while(moves.size()) {
move = moves.front();
moves.pop();

1
2
3
4
5
6 b = board;
7 b.applyMove();
8
9 quality = Lookahead(
b, other_color, newdepth);

10
if(quality > nBest) {

nBest = quality;
}

W N e

The variables b (line 6) and quality (line 9) are
defined outside of the loop. For reasons discussed
in section [6.1} we need to declare them within the
loop. For stylistic reasons, the author would have
written it this way in the first place. Also, nBest
is intended to be shared between all threads, so it
needs to be protected by a lock (or atomic update, as
in the version in the appendix). Finally, we throw in
our new keywords, and we have the final version of
the loop:

1 cwhile_iterator OthelloMove move;
2 concurrent_while(moves.size()) {
3 cwhile_generator {

4 move = moves.front();
5 moves.pop();
6 }
7
8 OthelloBoard b = board;
9 b.applyMove();
10
1 int quality = Lookahead(
b, other_color, newdepth);
2
3 if(quality > nBest) {
4 tbb: :spin_mutex::scoped_lock
1((tbb: :spin_mutex&)lock) ;
5 if (quality > nBest) {
6 nBest = quality;
7 }
8 }
9

We also need to make a couple changes else-
where. First, we can remove the declarations of b
and quality since they are now declared on the
inside of the loop. (We do need to add another
declaration of b in another branch however.) The
variable nBest is intended to be shared, so should
be marked tbb_shared. We need to declare lock
(and mark it tbb_shared). We need to create a
task_scheduler_init object in main. Finally, we
need to add a prototype for the Lookahead func-
tion. After that we simply tell the Makefile to use
our transformer (as explained later, this is as simple
as redefining CC and LD), to link against the TBB
libraries, and give it switches to tell it where the li-
braries and TBB headers are.

The original size of the loop was 11 lines, and it
is now 19. Three of those lines are either entirely
blank or consist of just a closing brace, one additional
line could be removed if we didn’t use the double-
checked locking pattern, and we removed two lines

from outside the loop. The above code is really not
any more difficult to understand than originally.

By contrast, the appendix includes the version that
the author wrote for our earlier assignment. There
are about 59 lines there, an increase of over 5x in
code size. The loop was split up and moved out of the
old location. And finally, tests between the generated
version and the hand-written version show that the
generated version performs only about 1% slower on
average, within the deviations experienced during the
testdfl

For this test we ran several versions of Othello on
an 8-core Clovertown machine, running with a looka-
head of 7 moves. Performance results are the mean
of three runs. This is using our implementation de-
scribed in the next section.

e Serial: this is the original, unmodified version.
Average execution time was 206 seconds.

e Elision: this is our parallel version with the new
keywords #defined away. Average execution
time: 197 seconds.

e GEN-1: our parallel version restricted to 1
thread. Average execution time: 215 seconds.

e Hand-8: hand-written TBB version, set to 8
threads. Average execution time: 37.6 seconds.

e GEN-8: generated TBB version, set to 8 threads.
Average execution time: 37.8 seconds.

e Hand-auto: hand-written TBB version, let the
number of threads up to TBB. Average execution
time: 36.7 seconds.

e GEN-auto: hand-written TBB version, let the
number of threads up to TBB. Average execution
time: 37.2 seconds.

In the comparisons of generated code vs. hand-
written code, the hand-written code wins, but only by
a tiny margin. In addition, the C++ elision actually
performed slightly better than the serial version; we
are not sure why.

6Bear in mind, however, that the transformations were de-
signed with this assignment fresh in memory, so the generated
code is very similar to the hand-written code. It’s fairly dan-
gerous to generalize this to conclude that it would do well for
any TBB usage. However, we do think that it would do well
over a wide variety of applications.

5 Implementation

We have a prototype implementation of the transfor-
mation of parallel _while only. Currently our C++
front end will parse concurrent_for, but it performs
no transformations on it.

Our project builds off of a C++ front end called
Elsa, written by Scott McPeak. Elsa began as a
proof-of-concept of the utility of a generalized LR
parser-generator called Elkhound [7], but has since
matured into a full-fledged project. It is now be-
ing maintained as part of a set of projects called
Oink ([I0]), maintained by Daniel Wilkerson and
Karl Chen. Elsa allows us to do C++ source-to-
source transformations with reasonable ease, though
the pretty-printing feature required a good bit of
work to bring up to a usable state.

The author used Elsa in a previous project done
with Gregory Cooksey, during which we patched
around two dozen bugs in the pretty-printing ability
of Elsa. For a number of reasons, we never integrated
most of these back into the original project, which
meant that the first step of this project was to reapply
the patches we developed last year. Unfortunately we
(mostly I) weren’t very disciplined about our source
control management for the early part of the project,
and often committed several fixes at once, bug fixes
at the same time as code for our project proper, and
fixes for one bug that accidentally reverted earlier
fixes requiring us to reapply patchesﬂ Thus the first
part of the project was teasing apart the old patches
and applying them to the updated version of Elsa.
The alternative, applying the changes to Elsa made
in the last year, would also have worked, a secondary
goal of this project was to provide an excuse to ex-
tract all those patches so we can send them upstream,
which is something that has been in the back of my
mind for a long time. The good news along this front
is that we only found about five new bugs during this
project, compared to over thirty last year.

The other part of the implementation is a bit of
glue. There is a wrapper script for GCC that makes
it possible to simply replace the g++ on the command
line. For instance, instead of saying g++ othello.cc
-02 -g -o othello, it is possible to say tbbetter
othello.cc -02 -g -o othello and the code will
be preprocessed by our transformer. This is also
adapted from our previous project, which in turn
adapted it from Ben Liblit’s CBI project where it was

7This mess, and the inability to send “here’s a patchfile for
your ticket number 132” is part of the reason these didn’t move
upstream.

developed for Liblit’s own source-to-source transfor-
mation [6].

6 Discussion

There are two interesting points not previously dis-
cussed. The first is a sequence of steps leading to the
fact that thread-local variables cannot be changed.
The second is discussion of how the next version of
the C++ standard will impact this work.

6.1 Thread-locals are const

There is an interesting property that comes out of the
transformation along with TBB’s own requirements
regarding the use of thread-local variables.

Consider a loop that the programmer wants to run
in parallel. If it is a for loop, it must have no loop-
carried dependences. If it is a while loop, it can
have some, but they must all be within the generator
portion. If this is not true, what happens during
execution of the parallel version? Iteration ¢ depends
on ¢ — 1, but there is no guarantee that ¢ will execute
after ¢ — 1. We suspect because of this reason, TBB
requires that the functions that implement the loop
body are const.

However, when our transformer operates, it turns
unshared variables that are used in the body but de-
clared outside the body into class members. This
means that the body object cannot modify some lo-
cal variables! This seems counterintuitive, but this
is actually a desirable property for the reasons given
above.

In section [when we moved the declarations of
b and quality into the loop, this is why. Had we
left them as-is, it would have caused a compiler error
when it tried to write to them from within a const
method.

Finally, note that tbb_shared variables are
not affected by this because they are modified
through a reference, nor is the generator object for
concurrent_while because pop_if present is not
declared const.

7 C++4+0x

The next version of the C++ standard is due out
in the next year or three, and there are a couple of
aspects of it that will impact this work.

First, there is a possibility that TBB will grow in
importance. There is a proposal that would add to

10

the standard library what is essentially a substantial
portion of TBB [§]. However, there is not an accom-
panying proposal to modify the language of C++,
which will leave developers in the same position as
TBB developers are now.

Second, there is a good chance that C++40x will
incorporate a proposal to add anonymous functions
(lambdas) and closures to the language [11]. This is
actually very exciting, because it means that a tool
like this work describes will cease to be very impor-
tant, which would be very helpful for the adoption
of TBB or a similar library. Closures would virtu-
ally eliminate the high-level syntactic issues for loops,
which we said were very important, at the expense of
some additional low-level syntax, which we said is
largely unimportant. Closures would allow the code
that comprises a loop to stay where the loop logically
belongs, and it would avoid the boilerplate code that
is saving locals in members.

The following is a guess of what TBB could look
like using the proposed closure syntax, parallelizing
the same loop as before:

1 auto gen = <&>(0OthelloMove& move) -> bool
2 { if(moves.size() > 0) {

3 move = moves.front();

4 moves.pop();

5 return true;

6 }

7 else {

8 return false;

9 }

10 }

1 auto body = <&>(0OthelloMove move)
2 { OthelloBoard b = board;

3 b.applyMove (move) ;

4

5 quality = Lookahead(

b, other_color, newdepth);

6

7 if(quality > nBest) {

8 scoped_lock 1(lock);

9 nBest = quality;
20 }

1}

2 parallel_while(gen, body);

The new syntax appears on lines 1 and 11. First,
the auto keyword, traditionally used to indicate that
a variable should have automatic storage duration
but long-ignored since it’s done automatically, has
been overloaded. (This is actually a different pro-
posal to the C++ committee, also very likely to be

accepted.) It now declares a variable whose type is
whatever the type of the initializer is. For instance,
auto i = 3; declares an integer, and auto f = 4 +
2.0; declares a floating point number. Using auto in
this way avoids the need to explicitly write the types
of gen and auto.

The other new syntax is <&>, which specifies
the start of the definition of a closure. The
(OthelloMove& move) on line 1 and similar bit of
line 11 defines the arguments to the closure. The clo-
sure on line 1 has the same type as pop_if_present
does now, and the closure on line 11 is the same as
the body’s operator (). Furthermore, the closure be-
ginning on line 1 returns a bool.

Both closures have access to the enclosing func-
tion’s local variables.

Closures will make dealing with a TBB-like library
far easier than the present situation. However, there
are a couple reasons why our tool is still interesting.
First, it’s likely going to be a long time before this
is actually usable. The standard has to be ratified
then compiler vendors have to actually implement it.
And for a long time after that, people will still want to
use older versions. For instance, despite GCC 4 being
out for a long time, the default on the CSL machines
is still 3.4. Despite being several years out of date,
Visual C++ 6.0 is still not terribly uncommon. The
second reason is that even though closures represent
a vast improvement over the present situation, we
think our syntax is still notably better than closures,
though a question of whether it is better enough to
justify the loss of standards compliance is a different
matter.

8 Conclusion

In this paper, we presented arguments in favor of
the use of TBB, but also our objections to its syn-
tax. To rectify this problem, we proposed a new
syntax that extends C++ with parallel program-
ming constructs, and explained how to do a rela-
tively simple source-to-source transformation to re-
duce them to straight C++. We briefly mentioned
our present prototype which performs the transfor-
mation for concurrent_while, and showed that for
our simple benchmark, it produced equivalent results
to a hand-written version with far less work.

If this project were to be continued in the fu-
ture, there are a number of things to do. From
more of a research standpoint, parallel _reduce and
parallel_scan were almost completely unconsidered

11

by us, and developing a syntax and transformation for
them is left as future work. There is also a better eval-
uation that should be done, with a broader base of
programs. One useful source of comparison material
is a contest Intel had for TBB programs [4]. It would
be useful to compare these hand-optimized programs
to ones where the transformations were done auto-
matically. Finally, modifications to TBB itself to al-
low something like inlets and aborts would be useful
even without these transformations.

From an engineering standpoint, there’s a lot that
can be done:

Finish the transformation for concurrent_for.
Currently it just parses.

Implement transformations for Cilk code.

Improve edge cases. For instance,
concurrent_whiles can currently not be
nested. This is largely an implementation arti-
fact (though the implicit nature of determining
the cwhile_iterator a loop uses is equally
responsible); there just hasn’t been reason to do
this yet.

Bring Elsa up to production quality. Fix the rest
of the bugs mentioned earlier.

Implement wrappers for other compilers. One
of the big benefits of doing this as a source-
to-source transformation is that the transformer
can theoretically be put in front of any compiler.
However, currently there is only a driver script
for GCC. Also, working on other compilers in
Elsa’s current state would almost certainly ex-
pose many new bugs.

References

[1] BLumorkg, R. D.; JoErG, C. F., KuszmAuUL,
B. C., LEISErRSON, C. E., RanDpALL, K. H.,
AND ZHOoU, Y. Cilk: an efficient multithreaded
runtime system. In PPOPP ’95: Proceedings of
the fifth ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming (New

York, NY, USA, 1995), ACM, pp. 207-216.

Dacuwm, L., aND MENON, R. OpenMP: An
industry-standard API for shared-memory pro-
gramming. I[EEE Comput. Sci. Eng. 5,1 (1998),
46-55.

3]

INTEL CORPORATION. Intel Thread Build-
ing Blocks 2.0 for open source. http://
threadingbuildingblocks.org/. Accessed De-
cember 20, 2007.

INTEL CORPORATION. Coding with Intel TBB
sweepstakes. http://softwarecommunity.
intel.com/articles/eng/1515.htm, Septem-
ber 2007. Accessed December 20, 2007.

INTEL CORPORATION. Intel Thread Building
Blocks Tutorial, 1.6 ed. Intel Corporation, 2007.

LiBuiT, B. The cooperative bug isolation
project. http://www.cs.wisc.edu/cbi/. Ac-
cessed December 20, 2007.

McPEAK, S. Elkhound: A fast, practical
GLR parser generator. Tech. Rep. UCB/CSD-
2-1214, Computer Science Division, Univer-
sity of California, Berkeley, December 2002.
Also available at http://www.cs.berkeley.
edu/~smcpeak/papers/elkhound _cc04.ps.

Romison, A. D. A proposal to add
parallel iteration to the standard library.
http://www.open-std.org/jtcl/sc22/wg21/

docs/papers/2006/n2104 . pdf), September
2006. Accessed December 20, 2007.

SUPERCOMPUTING TECHNOLOGIES GROUP.
Cilk 5.4.6 Reference Manual. MIT Laboratory
for Computer Science, 1998—. Available online
at http://supertech.csail.mit.edu/cilk/
manual-5.4.6.pdfl

WILKERSON, D., CHEN, K., AND MCPEAK, S.
Oink: a collaboration of C++ static analysis
tools. http://www.cubewano.org/oink/. Ac-
cessed December 20, 2007.

WiLLcock, J., JArvi, J., GREGOR,
D., StroUsTRUP, B., AND LUMSDAINE,
A. Lambda expressions and closures for

c++. http://www.research.att.com/~bs/
N1968-1lambda-expressions.pdf, February
2006.

12

http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://softwarecommunity.intel.com/articles/eng/1515.htm
http://softwarecommunity.intel.com/articles/eng/1515.htm
http://www.cs.wisc.edu/cbi/
http://www.cs.berkeley.edu/~smcpeak/papers/elkhound_cc04.ps
http://www.cs.berkeley.edu/~smcpeak/papers/elkhound_cc04.ps
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2104.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2104.pdf
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://www.cubewano.org/oink/
http://www.research.att.com/~bs/N1968-lambda-expressions.pdf
http://www.research.att.com/~bs/N1968-lambda-expressions.pdf

A Hand-written TBB code

The following is hand-written parallel_while code for the Othello example discussed in section[d} The first
bit is the code that actually executes the loop, and takes the place of the loop body:

parallel_while<LookaheadMoveEvaluator> w;

QueueGenerator g(moves);

LookaheadMoveEvaluator e(nBest, board, other_color, newdepth);
w.run(g, e);

Then is the definition of the generator class:

class QueueGenerator

{
queue<OthelloMove> & _moves;
public:
QueueGenerator (queue<OthelloMove> & moves)
: _moves(moves) { }
bool pop_if_present(OthelloMove & out_move)
{
if (_moves.empty())
return false;
else {
out_move = _moves.front();
_moves.pop();
return true;
}
}
+;

And finally the body class:

class LookaheadMoveEvaluator

{
atomic<int> & _nBest;
OthelloBoard const & _board;
char _otherColor;
int _newDepth;

public:

LookaheadMoveEvaluator (atomic<int> & nBest,
OthelloBoard const & board,
char otherColor,
int newDepth)

: _nBest(nBest)

, _board(board)

, _otherColor (otherColor)
, _newDepth(newDepth)

13

{3

void operator() (OthelloMove & move) const

{
OthelloBoard b = _board;
b.applyMove (move) ;
int quality = Lookahead(b, _otherColor, _newDepth);
int curNBest = _nBest;
while(quality > curNBest &&
_nBest.compare_and_swap(quality, curNBest) != curNBest)
{
curNBest = _nBest;
}
}

typedef OthelloMove argument_type;

14

	Introduction
	TBB Overview
	Loop-based components
	parallel_for
	parallel_while

	Task-based components

	Language Extension
	tbb_shared
	concurrent_for
	concurrent_while
	Tasks
	C++ Elision

	Example
	Implementation
	Discussion
	Thread-locals are const

	C++0x
	Conclusion
	Hand-written TBB code

