
TaskMan: Simple Task-Parallel Programming

Derek Hower
University of Wisconsin-Madison

Computer Sciences Dept.
1210 W. Dayton St. Madison, WI

drh5@cs.wisc.edu

Steve Jackson
University of Wisconsin-Madison

Computer Sciences Dept.
1210 W. Dayton St. Madison, WI

sjackso@cs.wisc.edu

Abstract

Programmers need better, more reliable techniques to
build parallel programs. In the task-parallel programming
paradigm, the programmer defines independent pieces of
work, called tasks, that may run in parallel. The runtime
library then takes responsibility for dynamically scheduling
these tasks with whatever processor resources are avail-
able, keeping low-level synchronization and threading de-
tails out of view. For certain classes of programs, this
paradigm can be extremely effective.

We present TaskMan, a C++ library for task-parallel
programming designed with emphasis on programmabil-
ity and simplicity. We discuss the TaskMan programming
model and describe the Taskman runtime. This runtime
is rather simple, but by exploiting fast communication be-
tween cores on a CMP, it can perform comparably to ma-
ture, heavily optimized task systems.

1 Introduction

With the advent of the multicore era, making parallel
programming accessible to the masses has become a top
priority for both industry and academia. One technique in
the parallel programmer’s toolbox is the task-parallel pro-
gramming model. In this model, the programmer identifies
independent units of work, called tasks, within her appli-
cation. These tasks may be executed in parallel, but the
burden of doing so is left to a runtime system that han-
dles all task synchronization and scheduling. Recently, this
model of task-parallel programming has gained significant
momentum with the release of several industry supported
tools. [3, 9]

Task-parallel programming brings two primary benefits
to the parallel programmer. First, it abstracts away the de-
tails of synchronization, allowing the programmer to focus
instead on the interesting portions of an algorithm. Pro-
gramming with the more traditional explicit threads-and-

locks model is difficult and error-prone, and can lead to
unreadable code that is hard to maintain or port to new sys-
tems. In contrast, task parallel code can be kept relatively
simple, and need not be tuned for a particular platform to
get good performance.

Second, a task model gives the programmer greater
power to express parallelism at relatively fine granularities.
While it can be difficult to find enough parallel work to jus-
tify adding a new dedicated thread to a program’s structure,
it is often easy to find task-sized parallel work. Further-
more, if an efficient task system is available, it may become
possible to parallelize library code without significant mod-
ification to programs that use the library.

Many existing task-parallel programming environments
were designed with performance as their primary goal. Un-
fortunately, the performance gained has occasionally come
at the programmer’s expense. Task-parallel programming
environments have either featured limited tools and unfa-
miliar languages, or they have introduced challenging syn-
tax and usage patterns into existing languages. But as the
architectural landscape changes, so too change the demands
upon programmers. The question is no longer “How do we
write the most efficient parallel code possible?” Instead, the
question is “How do we write modestly efficient parallel
code cheaply and quickly?”

In this paper we present a new task-parallel program-
ming model and runtime designed with the goals of sim-
plicity and programmability. The system, called TaskMan,
exploits low latency interconnect in CMPs to provide an
efficient yet intuitive model to the programmer. TaskMan
is a pure C++ library that can be built and used on a vari-
ety of common platforms. The programming model makes
use of futures [10] to present a call/return interface familiar
to programers of imperative languages while still providing
plenty of potential parallelism to the runtime environment.

We compare TaskMan to two existing, relatively mature
task-based runtime systems: Cilk [6] and Intel’s Thread
Building Blocks (TBB) library[3]. We find that TaskMan,
which has yet to be optimized, performs comparably to

1

these systems, while still delivering a lightweight and in-
tuitive interface to the programmer.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of task-based programming and
explain many of the common characteristics of task-based
runtimes. In Section 3 we discuss prior systems. Section 4
introduces the TaskMan programing model, and Section 5
gives details of the runtime implementation. We present our
evaluation methodology in Section 6 and discuss results in
Section 7. Section 8 concludes.

2 An Overview of Task-Based Programming

He could take up a task the moment one bell rang,
and lay it aside promptly the moment the next one
went, all tidy and ready to be continued at the
right time.
– From “Leaf by Niggle,” by J.R.R. Tolkien

Task-based programming is centered around the decom-
position of code into independent tasks. In most existing
systems, including our own, is the burden of the program-
mer to identify these independent regions and communicate
them to a specialized runtime environment. The runtime,
then, becomes responsible for scheduling and synchroniz-
ing the work. This runtime consists of a number of helper
threads, which execute tasks in parallel as they become
available.

Abstractly, the set of tasks that are ready to run form
a set, from which an idle helper thread may take any el-
ement. However, to improve locality and minimize con-
tention across distributed processing cores, this set is usu-
ally implemented as a distributed structure. Specifically,
task-parallel runtimes employ work-stealing task queues
[1, 2]. In the common case, a thread performs tasks avail-
able in its local queue. If it finds its queue empty, the thread
steals work from the queue of another thread.

Within a queue, a tasks are represented as a tuple con-
taining three types information: the task to be run (typi-
cally a function pointer), arguments needed by the task, and
(optionally) extra data required by the runtime scheduler.
When a task is spawned by a thread, a new task tuple is
placed at the head of that thread’s ready queue. Once placed
in the queue, the task may be later executed by its parent
thread, or stolen and executed by a different thread.

When a helper thread completes a task, it attempts to pop
a task from the head of its work queue.1 In contrast, stealing
occurs from the tail of the queue. This helps to exploit lo-
cality that often arises due to a correlation between a parent
task and its immediate children (which are the tasks closest

1“Queue” is something of a misnomer in this context, because the struc-
ture in question is really a double-ended queue, or deque. New tasks are
always added to a queue’s head, but they can be removed from either end.

cilk int fib(int n) {
if (n<2) return n;
else {

int x, y;

x = spawn fib(n-1);
y = spawn fib(n-2);

sync;

return (x+y);
}

}

Figure 1. An example of a Cilk-5 task.

to the head of the queue). Additionally, in recursive situ-
ations, the tasks closer to the queue’s tail may take longer
because they may spawn more subtasks. Stealing from the
tail of a queue can thus enhance the likelihood of stealing a
larger chunk of work, minimizing communication.

The mechanism of work stealing helps to balance the
load evenly among helper threads, while minimizing the
overhead of the task runtime. Blumofe and Leiserson [2]
have proven a number of theoretical bounds on this algo-
rithm’s use of time and memory space.

3 Prior Work

3.1 Cilk

Cilk [1, 6] is a research system designed to integrate
task-based parallelism into a C-like programming language.
It was originally developed for use in SMP systems; early
versions strove to minimize thread communication due to its
expense on these systems. The project has evolved through
several generations, and is now in its fifth major release.

Cilk is both a compiler frontend and runtime library.
The compiler frontend transforms code written for Cilk into
GNU C, then passes the transformed code to the standard
gcc compiler to build an executable. Though earlier ver-
sions of the system had complicated programming models,
the syntax of Cilk 5 is designed to be programmer friendly.

Cilk tasks are written as C functions with a special cilk
keyword decorating the function declaration. A task is in-
voked as a procedure call annotated with the spawn key-
word. An example Cilk program is shown in Figure 1,
which is a task-parallel implementation of a Fibanocci num-
ber calculation. When using Cilk, it is the responsibility of
the programmer to call sync before using the return value
of a spawned task. The sync keyword acts as a barrier
which ensures that all child tasks visible in the current scope

2

have completed. The return value of any running task is un-
defined until the sync instruction is executed.

The Cilk programming model (at least in its current
form) provides a simple interface to the programmer, one
that integrates comfortably with sequential code written in
C. As such, it is an elegant mechanism for expressing task
parallelism. However, Cilk has some practical drawbacks.
Subtle (and nondeterministic) bugs can occur if the pro-
grammer forgets to use the sync keyword before accesses
to task return values. Because Cilk is based on the C lan-
guage, it does not support C++ constructs. Also, the Cilk
compiler’s dependence on nested functions[5] means that
Cilk can only be used in conjunction with compilers that
support the GNU flavor of C. Finally, Cilk’s custom com-
piler and runtime are both nontrivial applications, and may
suffer portability and installation woes.

3.2 Threading Building Blocks (TBB)

In early 2007, Intel released the Threading Building
Blocks (TBB) library an open source project. It is a C++
library that provides support for task-based programing and
loop level parallelism, as well as a variety of support classes
for multithreaded programming, such as thread-safe con-
tainers. The library is quite flexible, allowing for extensive
performance tuning, and the associated runtime has been
highly optimized to run well on Intel processors.

The TBB task model is object oriented; a task is rep-
resented as a class, and is invoked by passing an instance
of the class to the runtime scheduler. Figure 2 shows how
the previous Fibanocci example would be written as a TBB
task. The task’s code is placed inside of the execute()
member function, which is a virtual method of the parent
task class. Any local data needed by the task is declared
as a class member variable, to be initialized through the
task’s constructor. Tasks in TBB must be allocated using
placement-new, as shown in the example.

A function that creates tasks invokes them using
one of the varieties of the spawn() function. The
spawn_and_wait_for_all() function is analogous
to a Cilk spawn followed immediately by a sync: it pre-
vents the parent function from proceeding any further until
all children have completed. TBB requires the programmer
to explicitly state how many children a task will spawn by
calling the set_ref_count() function. Depending on
the variety of spawn() used, this reference may or may
not include the parent. In Figure 2, the reference count is
set to three: two for the children and one for the parent.

TBB also has support for more advanced task program-
ming. Explicit continuation passing can be done in a TBB
task by specifying a function to be run when the task
completes. Additionally, TBB enables the programmer
to bypass the scheduler by returning a new task from the

class FibTask : public task {
public:

const int n;
long* const sum;
FibTask(long n_, long* sum_)

: n(n_), sum(sum_) {}

task* execute() {
if(n < 2) {

*sum = n;
return NULL;

} else {
int x,y;
FibTask& a = *new(allocate_child())

FibTask(n-1, &x);
FibTask& a = *new(allocate_child())

FibTask(n-2, &y);

set_ref_count(3);

spawn(b);
spawn_and_wait_for_all(a);

*sum = x+y;
return NULL;

}
}

Figure 2. An example of TBB task program-
ming.

3

execute() function rather than NULL. The returned task
will be executed immediately without consulting the sched-
uler. TBB also has wrapper classes to support conversion of
parallel loops into tasks. Like the TBB task class, these
wrappers are object-oriented.

TBB has the benefit of being a highly optimized plat-
form for task parallelism. It exposes configuration hooks so
that programs may be tuned for different architectures. Be-
cause of its industry support, it seems likely that TBB will
continue to grow and improve as time goes on.

However, TBB does have drawbacks, mostly from an
ease-of-programming standpoint. The class encapsulation
model leads to code which is scattered and difficult to read;
to move the functionality of a task into a class, the program-
mer must take the code out of its natural place in the flow of
the program. The additional burdens of placement-new and
manual reference counting multiply chances for program-
mers to make mistakes.

3.3 Task Parallel Library (TPL)

The Task Parallel Library (TPL)[9] is part of the Mi-
crosoft C# language. Syntactically, it is somewhat similar
to TaskMan. TPL also supports loop-level parallelism in
a manner similar to OpenMP[4]. Because TPL is a pro-
prietary library and has only recently become available for
public demonstration, we have not investigated it closely.

4 TaskMan: A Simple C++ Task Manager

Let me tell you how it will be
There’s one for you, nineteen for me
– from the Beatles song “Taxman”

We have designed and implemented TaskMan, an envi-
ronment for task-based parallel programming. This system
was designed with the following goals:

• The task system should be expressed as a C++ library,
with no changes to the base language.

• The programmer’s interface to the library should be as
simple as possible.

An example of a TaskMan function (again, for comput-
ing Fibonacci numbers) appears in figure 3. The library’s
primary interface, made up primarily of the task() func-
tion and the result class, is summarized in figure 4.

The programmer defines a task by calling the task()
function, which accepts any number of arguments2. The

2In reality, there is a static limit to the number of arguments accepted
by task(). However, this limit is an implementation detail and can be
increased at need.

first argument must be a function pointer, and the remain-
ing arguments are used as parameters to this function.
The return value of task(f,...) is an object of type
result<T>, where T is the return type of the function f.

The result object represents a future[10]. The value
of the future may be accessed through the result class’s
* operator. This operator may be used multiple times; the
task will execute only once.

The TaskMan library may run tasks in parallel, and eval-
uate them in any order. Consider the following simple ex-
ample:

result<int> r = task(f, 1);
...
cout << (*r);

The library guarantees that some thread will execute the
call f(1), at some time between the call to task() and
the return from (*r). Note that no programmer-visible
variables ever have indeterminate state in this example (un-
like in Cilk, where task return values are undefined before a
sync keyword).

Class member functions may serve as the first argument
of a call to task(). In this case, a pointer to an object of
the relevant class must occupy the second argument. For
example, given a class C with member function func, the
following is a valid task definition.

C obj;
result<...> res;
res = task(&C::func, &obj, ...);

Because tasks may run in parallel and in any order,
there is ample opportunity for race conditions, especially
on global data. It is the programmer’s responsibility to en-
sure that tasks are independent and thread-safe. If neces-
sary, the programmer may use locks or other synchroniza-
tion mechanisms to guard access to global structures within
tasks. (However, accessing globals during tasks may lead to
serialization and poor performance. Tasks are best suited to
truly independent work.)

5 Implementation of TaskMan

5.1 task() and result

A call to the task() function creates a tuple represent-
ing the task definition and pushes that tuple to the head of
the thread’s task queue. The calling function then continues.
This behavior differs from that of the abstract task-stealing
system described by Blumofe and Leiserson. Their theoret-
ical system begins executing a freshly defined task immedi-
ately, pushing the remainder of the calling function onto the
queue as a stealable task. However, this approach requires

4

int fib(int n) {
if(n < 2)

return n;
else{

result<int> x, y;
x = task(fib, n - 1);
y = task(fib, n - 2);
return (*x + *y);

}
}

Figure 3. An example of TaskMan program-
ming.

void taskman_init(int num_threads);
void taskman_shutdown();

template <typename T>
class result{

T operator*();
};

// for any function with type
// signature T f(A1, ..., An)
result< T >
task(T (*func_p)(A1, ..., An),

A1 arg1, ..., An argn);

Figure 4. TaskMan API

a level of support for continuations and closures [1] that is
not available in standard C++,. Thus, we have chosen to
take the simpler approach.3

The * operator in the result class does not immedi-
ately launch the associated task. Instead, this operator ex-
tracts the future’s values using the following algorithm:

1 get_result_value(result<...> r)
2 let t = the task associated with r
3 if(t has finished executing)
4 return t’s return value
5 else
6 do
7 get a task and run it
8 until (t has finished executing)
9 return t’s return value

Line 7 of this algorithm first check the thread’s local task
queue for available work. If it finds the local queue empty, it
attempts to steal from other threads. If no tasks are available
anywhere, line 7 takes no action, and the loop iterates.

This algorithm for forcing a future has several implica-
tions:

• The * operator may return very quickly (if the associ-
ated task has already run), or may run for some time.
In particularly, it may recursively execute any number
of tasks.

• The * operator does not necessarily run the task asso-
ciated with the result it is called on. (That task may
have been stolen by another thread.)

• Any task, once launched, remains at a fixed location
in the runtime stack until it completes. Partially com-
pleted tasks are never put into a work queue.

• If another thread is executing the task associated with
a result, and there is no other work available, the
thread accessing the result may spin on the task’s
“finished” flag. This is a potential source of overhead,
although this situation should be rare in practice.

It should be noted that the approach we have taken
can lead to very deep stacks, particularly when tasks are
spawned recursively. The stack depth itself is a potential
source of overhead.

5.2 Work stealing

Like Cilk, TaskMan assigns a work queue to each thread.
The queue interface is designed to work polymorphically, so
that the work queue implementation can be interchanged.

3We do not know what effect, if any, this modified approach has on the
performance bounds proven by Blumofe and Leiserson, though in practice
the impact appears to be minimal.

5

Thus TaskMan could be used as a test platform to compare
implementations of the work-stealing algorithm.

To date, we have only had time to bring up one imple-
mentation. In this implementation, each queue is a wrapper
around a std::deque object, with access to this object
synchronized with a per-queue mutex lock. A thread uses
blocking lock operations to add or remove a task from its
own queue, and uses a non-blocking trylock() opera-
tion when stealing from another queue. If a lock is not
immediately available upon a steal operation, the steal is
considered a failure. Since no thread ever blocks on a lock
other than its own, deadlock is avoided.

We have two partially complete task queue implemen-
tations, which could be analyzed in future work. One is a
transactional memory implementation, in which access to
the work queues is synchronized with atomic blocks. The
second is an implementation that relies on hardware task
queue support as described by Kumar et. al. [8]

5.3 Tasks in C++

Futures can be thought of as a form of lazy evaluation
[10]. Lazy evaluation is not directly supported in C++, and
the syntactic machinery that makes it possible is fairly com-
plicated. Though we have sought to hide this complication
within the library, away from the programmer, it leads to ad-
ditional function calls that add to already considerable stack
pressure.

The static type discipline of C++ is also a limitation. In
order to make the task() function both flexible and type-
safe, extensive use of templates is required. There are two
primary disadvantages of this. First, templated functions
and classes are compiled to separate object code for each
template signature. Thus, in a program that uses many dif-
ferent functions as tasks, many variants of task will be
compiled, increasing the program’s size and contributing to
bloat. Second, in the neighborhood of templated code, syn-
tax and type errors are notoriously verbose and confusing.
The task() function is type safe, but mistakes in using it
may produce unreadable error messages.

TaskMan’s result class relies on the C++ feature of
operator overloading. We chose to use the * operator as the
means of forcing a future because of its syntactic similarity
to pointer dereference.

6 Methodology

We evaluate the performance of TaskMan by comparing
it against two systems that represent the current state of the
art in task-based programming, namely TBB and Cilk. Our
evaluations are run on two different CMP systems with con-
siderably different architectures. The first is an 8 core ma-
chine consisting of two 2.33GHz Intel Core2 Quad “Clover-

town” chips with 4GB of memory. Processors in this sys-
tem are dynamically scheduled superscalar cores, with each
core containing a dedicated floating point unit. The second
system contains a single Sun Ultrasparc T1 “Niagara” with
4GB of main memory. The T1 consists of 8 cores, each
of which is 4-way multithreaded, for a total of 32 in-order
hardware contexts. All contexts share a single floating point
unit that has an access latency similar to an L2 cache bank
[7].

6.1 Benchmarks

6.1.1 Statistical Evaluator

To gain insight into the the overheads of TaskMan, we cre-
ated a microbenchmark that executes null tasks, the dura-
tions of which are determined by a random sampling from
a chosen probability distribution. We use this benchmark
to determine two things: 1) how TaskMan performs when
executing tasks of different average duration and 2) how
TaskMan is affected by burstiness in task arrivals (i.e. en-
queues). We ran tests on samples from the Exponential dis-
tribution to determine the former and the Pareto distribution
for the latter.

The exponential distribution is characterized by by a co-
efficient of variation equal to one, such that the mean and
standard deviation are equivalent. This leads to a meaning-
ful mean value and limited burstiness in task arrivals. For
the Pareto distribution, we chose the distribution parameters
so that samples had more variation than those from the ex-
ponential distribution while still maintaining the same mean
value. This increased variability leads to more burstiness,
which can be used to determine how TaskMan performs
when activity is unbalanced.

We ran two different versions of the statistical bench-
mark to simulate loop-level parallelism and task-level paral-
lelism. In the loop-level version, tasks are spawned in bulk
at the beginning of the run, at which point the main thread
waits until all tasks have completed. For the task-level ver-
sion, tasks are spawned recursively in such a manner that
the task dependencies form a 4-ary tree of variable depth.
We approximated both head and tail recursion by spawning
children both before and after a task’s alloted working time
has elapsed. Each task waits on its children to complete
before returning.

The tasks in this microbenchmark simulate working time
by spinning on hardware tick counters until the duration
specified by a random sampling has elapsed. Because the
hardware counters on the Sun T1 serialize across the sys-
tem, and because the counters on the Clovertowns do not,
we only ran this microbenchmark on the Intel system. Also,
due to time constraints, we only compare TaskMan to TBB
for this particular workload.

6

6.1.2 Cilk Suite

We converted three benchmarks that ship with the Cilk dis-
tribution into both the TaskMan and TBB models. The first
benchmark is a dense matrix multiply, the second a heat dif-
fusion computation, and the third a parallel LU decomposi-
tion. Because TBB cannot run on an Ultrasparc architec-
ture, and because all three are floating point intensive pro-
grams, we only evaluate these workloads on the Clovertown
system.

6.1.3 Othello AI

Finally, we created an AI program for the board game Oth-
ello (also known as Reversi).4 The AI performs recursive
minimax search, up to a specified depth, then uses heuristics
to evaluate the quality of board positions. We implemented
two heuristics:

• A simple heuristic that evaluates a board based on the
number of pieces each player possesses.

• A strategic heuristic that additionally considers the
strategic value of each square on the board, preferring
to capture edges and corners.

We created two parallel versions of this AI, one using
TaskMan, and another using TBB’s task interface. In both
cases, the AI’s recursive calls are redefined as task spawns.
For a lookahead depth of n, each task-based AI spawns
tasks for depths up to n − 2, and uses serial recursion to
evaluate the last 2 levels of the minimax tree. Doing so re-
duces overheads by decreasing the number of task spawns
and increasing the average size of a single task.

To avoid needless serialization on the Niagara architec-
ture, the Othello benchmark explicitly avoids floating point
computation within tasks.

7 Results

7.1 Statistical Evaluation

Figure 5 shows the results of our statistical evalua-
tion with samples from the exponential distribution. On
smaller tasks, TaskMan has a runtime overhead approxi-
mately twice that of TBB. However, when tasks are large
(about .1ms), the overheads become negligible. This is be-
cause contention on the task queues is nearly eliminated
when tasks run much longer than the time it takes to sched-
ule a new task in the runtime. As can be seen from the
contrast of Figures 5a and 5b, the task parallel version per-
formed slightly worse than the loop parallel version. This is

4Though we wrote this benchmark from scratch, its design is based on
a prototype written by Dan Gibson.

(a)

(b)

Figure 5. Results of the statistical evaluation.

7

Figure 6.

likely because the current queue implementation has a sin-
gle lock per thread queue that protects enqueue, dequeue,
and stealing operations. Thus, the task parallel version sees
more queue contention due to simultaneous enqueue and
dequeue/stealing operations. A better queue implementa-
tion, such as a lock-free structure or one synchronized with
memory transactions, could alleviate much of that pressure.

We found no noticeable difference between the head and
tail recursion versions of the task-parallel statistical eval-
uation, and thus only show results from the tail recursion
version. Likewise, we do not show the results of the statis-
tical evaluation using a Pareto distribution because results
were similar to those shown in Figure 5. This indicates that
TaskMan is relatively insensitive to burstiness in task arrival
times. Consequently, the mean of task durations is the main
determining factor in the performance of the TaskMan run-
time.

7.2 Cilk Suite

In Figures 6-8 we give the results of our converted Cilk
benchmarks. In both plu and heat we perform on par
with Cilk and Slightly worse than TBB. We presume this
is because TBB has been highly optimized to run on In-
tel processors, while TaskMan has yet to be optimized for
any architecture. Interestingly, we show, at least for these
benchmarks, that TaskMan is able to utilize the benefits of a
fast CMP interconnect to perform as well as Cilk, which has
been in development for over a decade, without introduc-
ing significant complexity in either the runtime implemen-
tation or programming model. The matmul benchmark

Figure 7.

Figure 8.

8

again shows TaskMan performing slightly worse than TBB,
though in this case Cilk outperforms both substantially. We
speculate that this benchmark gains significant performance
benefits from the new-task-first scheduling policy used in
Cilk.

7.3 Othello

Figure 9 shows the performance of TaskMan Othello vs.
TBB Othello on the 8-core Intel processor, for increasing
lookahead depths. Speedups are given relative to the orig-
inal, serial AI. Note that both systems have performance
ceilings when the number of available tasks is relatively
small (as when depth = 4). As more tasks become avail-
able, each system enjoys improved scalability.

We have noticed that, in figure 9, the speedup curves for
the TaskMan AI generally see a reduction in slope when the
processor count exceeds 4. We speculate that architectural
effects may be at work: the Clovertown architecture has
a slower interconnect between the two sets of four cores.
However, this effect deserves further investigation before
we make any certain claims.

In figure 10, we show the performance of TaskMan on
the Sun Niagara processor. Here we can see the difference
of task size on performance: the strategic board evaluator,
which does more work per board and leads to longer tasks,
sees a greater speedup.

Experiments on the Niagara use processor binding to dis-
tribute worker threads evenly among the Niagara’s eight
cores. Note the changes in speedup slope at approximately
8, 16, and 24 threads. In our experiments, maximum perfor-
mance is generally attained with 24 threads, corresponding
to the use of 3 out of 4 SMT threads per core.

Because of TaskMan’s deep stack depths, the Niagara
suffers a large number of traps to handle the spilling and
filling of register windows. We speculate that this may be a
source of significant overhead on this architecture.

8 Conclusions and Future Work

We have presented TaskMan, a simple C++ library for
task-based parallel programming. We have found this li-
brary to be a useful tool for expressing task-parallel compu-
tation, and its similarity to Cilk has made converting exist-
ing Cilk programs very easy. The performance of TaskMan
on modern CMPs is comparable to the performance of ma-
ture, highly optimized task systems, though the mature sys-
tems do perform better.

In the future, TaskMan could be extended in several
ways. It could be used as a platform to compare differ-
ent implementations of the work-stealing algorithm, with-
out requiring the rewriting of benchmarks. The program-
ming model of TaskMan could be extended to more fully

match the feature sets provided by mature systems. And, of
course, TaskMan can still be optimized for speed: we have
yet to reach the end of the long, dark path of performance
tuning.

Acknowledgments

The authors would like to thank Evan Driscoll and Ben
Liblit for helpful discussions. Dan Gibson’s technical assis-
tance was invaluable.

References

[1] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.
Cilk: an efficient multithreaded runtime system. In PPOPP
’95: Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 207–
216, New York, NY, USA, 1995. ACM.

[2] Robert D. Blumofe and Charles E. Leiserson. Schedul-
ing multithreaded computations by work stealing. J. ACM,
46(5):720–748, 1999.

[3] Intel Corporation. Intel threading building blocks 2.0 for
open source. http://threadingbuildingblocks.
org/, 2007.

[4] Leonardo Dagum and Ramesh Menon. Openmp: An
industry-standard api for shared-memory programming.
IEEE Comput. Sci. Eng., 5(1):46–55, 1998.

[5] The Free Software Foundation. Using the gnu compiler
collection – nested functions. http://gcc.gnu.org/
onlinedocs/gcc/Nested-Functions.html,
2007.

[6] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The implementation of the cilk-5 multithreaded language. In
PLDI ’98: Proceedings of the ACM SIGPLAN 1998 confer-
ence on Programming language design and implementation,
pages 212–223, New York, NY, USA, 1998. ACM.

[7] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle
Olukotun. Niagara: A 32-way multithreaded sparc proces-
sor. IEEE Micro, 25(2):21–29, 2005.

[8] Sanjeev Kumar, Christopher J. Hughes, and Anthony
Nguyen. Carbon: architectural support for fine-grained par-
allelism on chip multiprocessors. In ISCA ’07: Proceedings
of the 34th annual international symposium on Computer
architecture, pages 162–173, New York, NY, USA, 2007.
ACM.

[9] Daan Leijen and Judd Hall. Optimize managed
code for multi-core machines. http://msdn.
microsoft.com/msdnmag/issues/07/10/
futures/default.aspx, 2007.

[10] Jr. Robert H. Halstead. Multilisp: a language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst.,
7(4):501–538, 1985.

9

Figure 9. Othello benchmark results: TBB vs. Taskman on 8-core Intel processor

Figure 10. Othello benchmark results: Speedups on 32-thread Niagara processor, for simple board
evaluator (smaller tasks) and strategic evaluator (bigger tasks)

10

