Credits

- Slides based on Milo Martin’s CIS 534 slides at Penn, he credits:
 - Intel Academic Community materials and resources
 - UPCRC 2009 Summer School on Multicore Programming
 - Prof. Marc Snir (Illinois)
 - Prof. Katherine Yelick (Berkeley)
 - Prof. David Wood (Wisconsin)
 - Who credits:
 - Prof. Saman Amarasinghe (MIT), Prof. Mark Hill (Wisconsin)
 - Prof. David Patterson (Berkeley), Prof. Marc Snir (Illinois)
 - Prof. Vivek Sarkar (Rice)
 - Who credits:
 - Jack Dongarra (U. Tennessee), John Mellor-Crummey (Rice)
 - Kathy Yelick (Berkeley)
 - David Kirk (NVIDIA) and Wen-mei W. Hwu (Illinois), ECE 498AL

Full Disclosure

- Potential sources of bias or conflict of interest
- I consult for Microsoft Research
- My non-governmental sources of research funding
 - Google & Microsoft
- Most of my funding governmental (your tax $$ at work)
 - Mostly from National Science Foundation (NSF)
 - Also Sandia National Labs
- Collaborators and colleagues
 - Intel, IBM, AMD, Sun, Microsoft, Google, VMWare, etc.
 - (Just about every major computer hardware company)

Why me?

- I’m a computer architect
 - I design hardware, I don’t program it
 - I don’t know C++ or Java

- Dirty little secret…
 - I used to be a database guy (shh!)
 - Wrote the concurrency control libraries for Synapse Computer Corp.
 - First RDBMS for a microprocessor-based shared memory multiprocessor (back in the early 1980s)

- Dirtier little secret…
 - Not much has changed since then….
Programming Multicores

The Dilbert Approach

Parallel Thinking Exercise: Sorting

- Working in groups (four or more for the class)
 - Develop a method for quickly sorting cards as a group
- Think about “communication cost”
 - All cards start face down on table
 - Team members may pick up a card OR put one back
 - Must return to seat after each “communication”
- Think about coordination (aka “synchronization”)
 - Team members may coordinate by meeting at end of table
 - No exchange of cards during coordination
- Think about “decomposition”
 - Break problem into smaller pieces

Impediments to Parallel Computing

- Identifying “enough” parallelism
 - Problem decomposition (tasks & data)
- Performance
 - Parallel efficiency & scalability
 - Granularity
 - Too small: too much coordination overhead
 - Too large: not enough parallelism, over-stress memory system
 - Load balance
 - Effective distribution of work (statically or dynamically)
 - Memory system: data locality, datasharing, memory bandwidth
 - Synchronization and coordination overheads
- Correctness
 - Incorrect code leads to deadlock, crashes, and/or wrong answers
Inherently Parallel

- Painting a fence:
 - Work = (picket_painting_time) * (# pickets)
 - Width = (# pickets) / (painter_width)

Granularity

- Average task size
 - Cannot be too small
 - Too many painters spoil the fence

More Terminology

- Running Time $T_p(N)$ – function of p, number of HW threads, and N, problem size.
 - Often fix problem size N, and look at running time, as function of p.

Speedup (Simple)

- Measure of how much faster the computation executes versus the best serial code
 - Serial time divided by parallel time
- Example: Painting a picket fence
 - 30 minutes of preparation (serial)
 - One minute to paint a single picket
 - 30 minutes of cleanup (serial)
- Thus, 300 pickets takes 360 minutes (serial)
Computing Speedup

<table>
<thead>
<tr>
<th>Number of painters</th>
<th>Time</th>
<th>Speedup</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 + 30 + 30 = 90</td>
<td>1.0X</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>30 + 150 + 30 = 210</td>
<td>1.7X</td>
<td>85%</td>
</tr>
<tr>
<td>10</td>
<td>30 + 30 + 30 = 90</td>
<td>4.0X</td>
<td>40%</td>
</tr>
<tr>
<td>100</td>
<td>30 + 30 + 30 = 63</td>
<td>5.7X</td>
<td>5.7%</td>
</tr>
<tr>
<td>Infinite</td>
<td>30 + 0 + 30 = 60</td>
<td>6.0X</td>
<td>very low</td>
</tr>
</tbody>
</table>

Illustrates Amdahl’s Law
Potential speedup is restricted by serial portion

Speedup

- \(T_1(N)/T_p(N) \)

- Speedup is most often sub-linear

Efficiency

- Measure of how effectively computation resources (threads) are kept busy
 - Speedup divided by number of threads
 - Expressed as average percentage of non-idle time

<table>
<thead>
<tr>
<th>Number of painters</th>
<th>Time</th>
<th>Speedup</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>360</td>
<td>1.0X</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>30 + 150 + 30 = 210</td>
<td>1.7X</td>
<td>85%</td>
</tr>
<tr>
<td>10</td>
<td>30 + 30 + 30 = 90</td>
<td>4.0X</td>
<td>40%</td>
</tr>
<tr>
<td>100</td>
<td>30 + 30 + 30 = 63</td>
<td>5.7X</td>
<td>5.7%</td>
</tr>
<tr>
<td>Infinite</td>
<td>30 + 0 + 30 = 60</td>
<td>6.0X</td>
<td>very low</td>
</tr>
</tbody>
</table>

Efficiency

- \(T_1(N)/(pT_p(N)) \)

- Efficiency is <1 and decreasing, usually
Two Types of “Efficiency”

- Efficiency as “performance per core”
 - Are you capturing the peak efficiency?

- Efficiency as “performance per unit of energy”
 - Is the computation energy efficient

Examples:
- Use all cores half the time, one core half the time
 - Assuming unused cores “idle”, power efficient
 - Uses all cores all the time, but overheads reduce performance
 - Inefficient in both efficiency metrics

Amdahl’s Law

Amdahl’s Law places a strict limit on the speedup that can be realized by using multiple processors. Two equivalent expressions for Amdahl’s Law are given below:

\[t_N = (f_p/N + f_s)t_1 \quad \text{Effect of multiple processors on run time} \]

\[S = 1/(f_p + f_p/N) \quad \text{Effect of multiple processors on speedup} \]

Where:
- \(f_s \) = serial fraction of code
- \(f_p \) = parallel fraction of code = 1 - \(f_s \)
- \(N \) = number of processors

Illustration of Amdahl’s Law

It takes only a small fraction of serial content in a code to degrade the parallel performance. It is essential to determine the scaling behavior of your code before doing production runs using large numbers of processors.

Overhead of Parallelism

- Given enough parallel work, this is the biggest barrier to getting desired speedup

- Parallelism overheads include:
 - cost of starting a thread or process
 - cost of communicating shared data
 - cost of synchronizing
 - extra (redundant) computation

- Each of these can be in the range of milliseconds (~millions of flops) on some systems

- Tradeoff: Algorithm needs sufficiently large units of work to run fast in parallel (i.e. large granularity), but not so large that there is not enough parallel work
Even Parallelism Has Limits

- 1 core. 2 cores. 4 cores. 8 cores. 1024 cores!
 - This is how some multicore researchers count
- Power scaling limitations: "utilization wall"
 - Energy per transistor is decreasing...
 - But, not as rapidly as the number of transistors available
 - Will limit the number of transistors in use at one time
- Memory system: "memory wall"
 - Limited cache capacity, memory bandwidth
- Amount of parallelism in applications: "Amdahl's Law"
 - Few algorithms scale up to 1000s of cores
- Our focus: moderate core counts (walk, then run)
 - Even though limited, parallelism is key to increased performance

What is Multicore (Parallel) Computing?

- **Parallel computing**: using multiple processors to...
 - More quickly perform a computation, or...
 - Perform a larger computation in the same amount of time
 - Programmer expresses and/or coordinates the parallelism

Examples:

- Clusters of computers, coordinate with explicit messages
- A shared-memory multiprocessor
- Called a "multicore" when all on the same chip
- Graphics processing units (GPUs)
 - Perform computations in parallel, increasingly programmable
- The parallel execution motivated by performance
 - Different from concurrency in a distributed system or network server
Aside: This Class is About Three Things

- Performance!
- Performance!!
- Performance!!!
- OK, not really...
 - Also about correctness, "-abilities", etc.
 - But if you think "computers are fast enough"...
 - And "low power enough"...
 - ...this probably isn’t the course for you!
- And not performance "in theory"
 - Physics analogy: not "frictionless surfaces" and "no air resistance"
 - Nitty gritty real-world wall-clock performance

A Trend in Computing Last Few Decades

- Old conventional wisdom:
 Trade performance for improved programmer productivity
 - Higher-level languages, interfaces, abstraction layers, frameworks
 - Graphical user interfaces (GUIs)
 - How many hardware instructions to put "hello world" in a window?
 - See: "Spending Moore’s Dividend", Jim Larus, CACM 2009
- New conventional wisdom:
 Obtain performance by reducing programming productivity
 - Programmers given additional burden: writing parallel software
 - Seems like a really bad idea...
- More conventional wisdom:
 - Parallel programming is intractably difficult

What is Old is New Again

- Parallelism isn’t new
 - Commonplace for computational science and engineering
 - To tackle problems too large to solve on any one computer
 - Old-school “supercomputers” were also highly parallel
- Mainstream parallel computing “next big thing” for decades
 - Many companies bet on parallelism and failed
 - Why? One reason: non-parallel computers got faster so quickly
- OK, so why is parallelism so talked about now?
 - The entire industry has bet on parallelism!
 - Driven to parallelism by technology and architectural realities (next)
 - Sequential (non-parallel) performance is lagging
 - Thus, need for parallel programmers & related research

Old Dynamic of Parallel Computing

- Parallel computers are expensive
- Parallel computing not mainstream
- There are not many parallel computers
- Most people do not learn parallel programming
- Parallel programming environments are inadequate
- Parallel programming is difficult
Why Explicitly Parallel over Sequential?

- Today’s micro-architectural design realities
 - Pipelining pushed to limits
 - Instruction-level parallelism maxed out
 - Cache misses limit performance
 - Relatively longer wire delays (many cycles to cross the chip)

1. Diminishing returns on single-thread “implicit parallelism”
 - Speedup less than increase in chip area (which is maybe okay)
 - Increasingly, no untapped techniques to accelerate sequential code

2. Power implications
 - Parallelism is power efficient
 - High clock frequency is power inefficient
 - Multiple lower-frequency cores versus single higher-frequency core

Power Implications of Parallelism

- Consider doubling number of cores, same power budget
 - By reducing clock frequency and voltage... but how much?

- First, a few equations (approximate, first order)
 - Frequency ~ Voltage (higher voltage -> transistors switch faster)
 - Dynamic Power ~ Transistors * Frequency * Voltage^2
 - Thus, Dynamic Power ~ Transistors * Frequency^3

- How?
 - Doubling number of cores (transistors) will double the power
 - Reducing frequency & voltage by 20% will cut power in half
 (0.8^3 is 0.5)... 1.6x the peak performance of original design

- Parallelism has greater performance potential
 - If we can write software for it!

Technology Trend Data

- Performance ~ freq * IPC
- Power = Num * Voltage^2 * freq
- # of transistors growing

- Moore’s law
- Clock frequencies flat
- Power budget at limit
- IPC flat
- Solution? Reduce voltage?
 - Yes, but hurts frequency
 - And, see next slide
Instantiations of Explicit Parallelism

- **Multicore**
 - More than one processor ("core") on a chip
 - 1990s multi-socket multiprocessor on a chip
 - Provides a "shared memory" abstraction

- **Vectors/SIMD**
 - Special instructions that operate on multiple data in one instruction
 - Example: four 32-bit adds (pairwise) on 128-bit registers
 - Added by compiler (automatic vectorization or by programmer)
 - 1970s Cray supercomputer on a chip

- **Accelerators / Graphics Processing Units (GPUs)**
 - 1990s SGI Reality/InfiniteReality Engine on a chip Special-purpose
 - graphics hardware -> general-purpose hardware
 - "Programmable" shaders

Voltage Evolution

Parallel Architectures

Multicore Everywhere

- **Servers**
 - Racks of multi-socket multi-core processors
 - Until recently, sweet spot was dual-socket dual-core x86 servers

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Sockets</th>
<th>Cores per chip</th>
<th>Threads per core</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun's Niagara T1</td>
<td>2005</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Sun's Niagara T2</td>
<td>2007</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>AMD's "Istanbul"</td>
<td>2009</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Intel's Nehalem-EX</td>
<td>2010</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>64</td>
</tr>
</tbody>
</table>

- **Desktop**: Intel's quad-core i7
- **Game consoles**: PS3 (8 cores), XBox 360 (3 cores)
- **Laptops**: Intel's dual-core Core 2 Duo
- **Mobile devices**: Atom (x86), Tegra 2 (ARM)
Multicore Examples

- Multicore chips
 - IBM Power5
 - Two 2+ GHz PowerPC cores
 - Shared 1.5 MB L2, L3 tags
 - AMD Quad Phenom
 - Four 2+ GHz cores
 - Per-core 512KB L2 cache
 - Shared 2MB L3 cache
 - Intel Core 2 Quad
 - Four cores, shared 4 MB L2
 - Two 4MB L2 caches
 - Sun Niagara
 - 8 cores, each 4-way threaded
 - Shared 2MB L2, shared FP
 - For servers, not desktop

Why multicore? What else would you do with a billion transistors?

GeForce 8800

- 16 highly threaded units, >128 FPU’s, 367 GFLOPS
- 768 MB DRAM, 86.4 GB/S memory bandwidth

Why multicore? What else would you do with a billion transistors?

Graphics Processing Units (GPU)

- Killer app for parallelism: graphics (3D games)
- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until recently, programmed through graphics API
 - GPU in every desktop, laptop, mobile device
 - Massive volume and potential impact

Recent Mobile Example: Nvidia’s Tegra 2

- Two next-generation ARM cores, 600 mWatts
- 1080p video playback, 3D touchscreen UI support, unmatched battery life.

Why multicore? What else would you do with a billion transistors?

GeForce 8800

- 16 highly threaded units, >128 FPU’s, 367 GFLOPS
- 768 MB DRAM, 86.4 GB/S memory bandwidth

Why multicore? What else would you do with a billion transistors?

Graphics Processing Units (GPU)

- Killer app for parallelism: graphics (3D games)
- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until recently, programmed through graphics API
 - GPU in every desktop, laptop, mobile device
 - Massive volume and potential impact

Recent Mobile Example: Nvidia’s Tegra 2

- Two next-generation ARM cores, 600 mWatts
- 1080p video playback, 3D touchscreen UI support, unmatched battery life.

Why multicore? What else would you do with a billion transistors?
CS 758 Administrivia

- Instructor: Prof. David Wood
- TA: Derek Hower
- Contact email: david@cs.wisc.edu, drh5@cs.wisc.edu
- See web for office hours
- Lectures: MWF 1:00-2:15
- WWW: http://www.cs.wisc.edu/~cs758/
- Keep an eye on: …/schedule.html
- Class e-mail list
 - If you’re not officially registered, see me to get on this list

CS758: Course Requirements

- Some architecture background
 - Graduate-level (CS/ECE 752) or advanced undergraduate level (CS552)
 - Topics: pipelining, caches, processor performance metrics, etc.
- Substantial programming experience (C/C++/Java)
- Familiarity with C++ programming
 - Least-common denominator language for parallel computing
 - OpenCL/CUDA build upon C
- Instructor’s permission

CS758: Course Topics

- Topics
 - Multicore architectures
 - Threads and shared memory
 - Synchronization (barriers and various locks)
 - Task-based runtimes (OpenMP, TBB, Cilk)
 - Data-level parallelism (vectors & SIMD)
 - GPU architectures & programing (OpenCL)
 - Research: serialization sets, transactional memory, multicore map-reduce, etc.
- Non-Topics
 - Cluster computing
 - Message-passing parallelism (MPI)
 - Cloud computing
 - Distributed systems
CS758: Course Outcomes

Outcomes
- Knowledge of general concepts in multicore programming
- Understand performance implications of parallel architectures
 - Difficult to abstract the performance of multicore hardware
- Hands-on experience writing and tuning multicore software
- Exposure to several multicore programming approaches
- Significant parallel programming project
- Preparation for multicore programming/architectures research

Non-Outcomes
- Being an "expert" in any one programming model/language
- Learning specific tools or development environments in depth

CS758: Warning

- No standard format for such a class
- No established textbook, canonical assignments, etc.
- Simultaneously a "new" & "old" topic (stale conventional wisdom)
- We'll rely mostly on primary sources

Course format will be some combination of:
- PhD seminar course (readings, reviews, discussion)
- Graduate-level project course (programming assignments, project)
- Lecture course (lectures, exam)

Plan: primarily in-class discussions, lectures to fill in gaps

CS758: Coursework

- Class participation (10%)
 - Expected to complete assigned readings before class
 - And actively participate in discussions

- Paper reviews (10%)
 - Short response to papers we'll discuss in class
 - Turn in 9am morning of class period (must be present)
 - Grading: Excellent (10 pts), Satisfactory (7 pts), unsatisfactory (3 pts)

- Programming assignments (25%)
 - Various hands-on programming assignments

- Exam (20%) - one exam, not during finals week
 - After spring break, in class, exact date TBD

- In-class paper presentation (5%)
 - Give a ~20 minute presentation of a paper to the class

- Course project (30%)

CS758: Course Project

- Parallel programming project
 - Groups of two (three or one, with advanced approval of instructor)
 - Proposal, presentation (class conference), final report (conference format)
 - More logistics later

- Create substantial parallel program
 - Analyze and tune its parallel performance
 - Focus on parallel aspect (easy or existing serial solution)

- Case study on comparing/contrasting programming models
 - Simpler parallel program...
 - But experimentally compare the performance, discuss ease of development

- Mini-research project
 - Examine modest extension to paper studied in class (default)
 - Runtime system modification, advanced synchronization, etc.
 - Your own idea (more ambitious!)
Academic Honesty

- You’re encouraged to discuss the course content and assignments...
- But, anything with your name on it... must be YOUR OWN work
- Possible penalties for dishonesty
 - Zero on assignment (minimum)
 - Fail course
 - Note on permanent record
 - Suspension
 - Expulsion
- See UW Student Code of Conduct

“Parallelism” versus “Concurrency”

- “Threads and locks”
 - Common idiom for two often-confused, but distinct domains
- “Concurrent” software
 - A property of the “environment” of the program
 - Threads for handling input/output
 - Network packet arrival
 - User interacts with GUI (graphical user interface)
 - Hardware interrupt in O.S.
 - Makes sense even in a single-core system
- “Parallel” software
 - Goal: faster runtime
 - Only for multiple hardware cores or cluster computing
- Some programs are both

Notes

For Next Time...

- Read the two papers
 - “The Free Lunch is Over”, Herb Sutter
 - “Software and the Concurrency Revolution”, Sutter and Larus
- Paper review due at beginning of class (hardcopy)
 - See web page for specifics (posted soon)
- Note: No class Monday (MLK)
- See me now if:
 - You’re not officially registered, but want to
 - Any other questions about prerequisites or the course
- Want to receive course emails?
 - Send me email