
1 CS758 Multicore Programming (Wood) Synchronization  

CS758 
Synchronization 



2 CS758 Multicore Programming (Wood) Performance Tuning 

Shared Memory Primitives 



3 CS758 Multicore Programming (Wood) Synchronization 

Shared Memory Primitives 

•  Create thread 
•  Ask operating system to create a new “thread” 
•  Threads starts at specified function (via function pointer) 

•  Memory regions 
•  Shared: globals and heap 
•  Per-thread: stack 

•  Primitive memory operations 
•  Loads & stores 
•  Word-sized operations are atomic (if “aligned”) 

•  Various “atomic” memory instructions 
•  Swap, compare-and-swap, test-and-set, atomic add, etc.  
•  Perform a load/store pair that is guaranteed not to interrupted 



4 CS758 Multicore Programming (Wood) Synchronization 

Thread Creation 

•  Varies from operating system to operating system 
•  POSIX threads (P-threads) is a widely supported standard (C/C++) 
•  Lots of other stuff in P-threads we’re not using 

•  Why? really design for single-core OS-style concurrency  

•  pthread_create(id, attr, start_func, arg) 
•  “id” is pointer to a “pthread_t” object 
•  We’re going to ignore “attr”  
•  “start_func” is a function pointer 
•  “arg” is a void *, can pass pointer to anything  (ah, C…) 



5 CS758 Multicore Programming (Wood) Synchronization 

Thread Creation Code Example I 

•  Caveat: C-style pseudo code 
•  Examples like wont work without modification 

•  pthread_create(id, attr, start_func, arg) 
•  “start_func” is a function pointer 
•  “arg” is a void *, can pass pointer to anything  (ah, C…) 

void* my_start(void *ptr)  
{ 

printf(“hello world\n”); 
return NULL;  // terminates thread 

} 
int main() 
{ 

pthread_t id; 
int error = pthread_create(&id, NULL, my_start, NULL); 
if (error) { … } 
pthread_join(id, NULL); 
return 0; 

} 



6 CS758 Multicore Programming (Wood) Synchronization 

Thread Creation Code Example II 
void* my_start(void *ptr)  
{ 
  int* tid_ptr = (int *) ptr;    // cast from void* 
  printf(“hello world: %d\n”, *tid_ptr); 
  return NULL;  // terminates thread 
} 

void spawn(int num_threads) 
{ 
  pthread_t* id = new pthread_t[num_threads]; 
  int* tid = new int[num_threads]; 

  for (int i=1; i<num_threads; i++) { 
    tid[i] = i; 
    void *ptr = (void *) &i; 
    int error = pthread_create(&id[i], NULL, my_start, &tid[i]); 
    if (error) { … } 
  } 
  tid[0] = 0; 
  my_start(&tid[i]);   // “start” thread zero 

  for (int i=1; i<num_threads; i++) { 
    pthread_join(id[i], NULL); 
  } 
} 



7 CS758 Multicore Programming (Wood) Synchronization 

Compare and Swap (CAS) 

•  Atomic Compare and Swap (CAS) 
•  Basic and universal atomic operations 
•  Can be used to create all the other variants of atomic operations 
•  Supported as instruction on both x86 and SPARC 

•  Compare_and_swap(address, test_value, new_value): 
•  Load [Address] -> old_value 
•  if (old_value == test_value): 

•  Store [Address] <- new_value 
•  Return old_value 

•  Can be included in C/C++ code using “inline assembly” 
•  Becomes a utility function 



8 CS758 Multicore Programming (Wood) Synchronization 

Inline Assembly for Atomic Operations 

•  x86 inline assembly for CAS 
•  From Intel’s TBB source code machine/linux_intel64.h 
static inline int64 compare_and_swap(volatile void *ptr, !

                                     int64 test_value, !

                                     int64 new_value)!

{!

  int64 result;!

  __asm__ !

  __volatile__("lock\ncmpxchgq %2,%1"!

               : "=a"(result), "=m"(*(int64 *)ptr)!

               : "q"(new_value), "0"(test_value), "m"(*(int64 *)ptr)!

               : "memory");!

  return result;!

}!

•  Black magic 
•  Use of volatile keyword disable compiler memory optimizations 



9 CS758 Multicore Programming (Wood) Synchronization 

Fetch-and-Add (Atomic Add) 
•  Another useful “atomic” operation 

•  atomic_add(address, value) 
•  Load [address] -> temp 
•  temp2 = temp + value 
•  store [address] <- temp2 

•  Some ISAs support this as a primitive operation (x86) 

•  Or, can be synthesized out of CAS: 
int atomic_add(int* ptr, int value)  
{ 

while(true) { 
  int original_value = *ptr; 
  int new_value = original_value + value; 
  int old = compare_and_swap(ptr, original_value, new_value); 
  if (old == original_value) { 
    return old;    // swap succeeded 
  } 
} 

} 



10 CS758 Multicore Programming (Wood) Synchronization 

Thread Local Storage (TLS) 

•  Sometimes having a non-shared global variable is useful 
•  A per-thread copy of a variable 

•  Manual approach: 
•  Definition: int accumulator[NUM_THREADS];!
•  Use: accumulator[thread_id]++;!
•  Limited to NUM_THREADS, need to pass thread_id around 

false sharing!

•  Compiler supported: 
•  Definition: __thread int accumulator = 0;!
•  Use: accumulator++;!
•  Implemented as a per-thread “globals” space 

•  Accessed efficiently via %gs segment register on x86-64 
•  More info: http://people.redhat.com/drepper/tls.pdf 



11 CS758 Multicore Programming (Wood) Performance Tuning 

Simple Parallel Work Decomposition  



12 CS758 Multicore Programming (Wood) Synchronization 

Static Work Distribution 

•  Sequential code 
for (int i=0; i<SIZE; i++):!

calculate(i, …, …, …)!

•  Parallel code, for each thread: 
void each_thread(int thread_id):!

segment_size = SIZE / number_of_threads!
assert(SIZE % number_of_threads == 0)!
my_start = thread_id * segment_size!
my_end = my_start + segment_size!
for (int i=my_start; i<my_end; i++)!

calculate(i, …, …, …) 

•  Hey, its a parallel program! 



13 CS758 Multicore Programming (Wood) Synchronization 

Dynamic Work Distribution 

•  Sequential code 
for (int i=0; i<SIZE; i++):!

calculate(i, …, …, …) 

•  Parallel code, for each thread: 
int counter = 0    // global variable!
void each_thread(int thread_id):!

while (true)!
int i = atomic_add(&counter, 1)!
if (i >= SIZE) !

return!
calculate(i, …, …, …) 

•  Dynamic load balancing, but high overhead 



14 CS758 Multicore Programming (Wood) Synchronization 

Coarse-Grain Dynamic Work Distribution 

•  Parallel code, for each thread: 
int num_segments = SIZE / GRAIN_SIZE!
int counter = 0    // global variable!
void each_thread(int thread_id):!

while (true)!
int i = atomic_add(&counter, 1)!
if (i >= num_segments) !

return!
my_start = i * GRAIN_SIZE!
my_end = my_start + GRAIN_SIZE!
for (int j=my_start; j<my_end; j++)!

calculate(j, …, …, …) 

•  Dynamic load balancing with lower (adjustable) overhead 



15 CS758 Multicore Programming (Wood) Performance Tuning 

Barriers 



16 CS758 Multicore Programming (Wood) Synchronization 

Common Parallel Idiom: Barriers  

•  Physics simulation computation 
•  Divide up each timestep computation into N independent pieces 
•  Each timestep: compute independently, synchronize 

•  Example: each thread executes: 
segment_size = total_particles / number_of_threads!

my_start_particle = thread_id * segment_size!

my_end_particle =  my_start_particle + segment_size - 1 !

for (timestep = 0; timestep += delta; timestep < stop_time):!

calculate_forces(t, my_start_particle, my_end_particle)!

barrier()!

update_locations(t, my_start_particle, my_end_particle)!

barrier()!

•  Barrier? All threads wait until all threads have reached it 



17 CS758 Multicore Programming (Wood) Synchronization 

Example: Barrier-Based Merge Sort 

Barrier 

Barrier 

t0	

 t1	

 t2	

 t3	



Step 1	



Step 2	



Step 3	



Algorithmic Load Imbalance 



18 CS758 Multicore Programming (Wood) Synchronization 

Global Synchronization Barrier 

•  At a barrier 
•  All threads wait until all other threads have reached it 

•  Strawman implementation (wrong!) 

global (shared) count : integer := P 

procedure central_barrier 
  if fetch_and_decrement(&count) == 1 
    count := P 
  else 
    repeat until count == P 

•  What is wrong with the above code? 

Barrier 

t0	

 t1	

 t2	

 t3	





19 CS758 Multicore Programming (Wood) Synchronization 

Sense-Reversing Barrier 

•  Correct barrier implementation: 

global (shared) count : integer := P 
global (shared) sense : Boolean := true 
local (private) local_sense : Boolean := true 

procedure central_barrier 
  // each processor toggles its own sense 
  local_sense := !local_sense   
  if fetch_and_decrement(&count) == 1 
    count := P 
    // last processor toggles global sense 
    sense := local_sense    
  else 
    repeat until sense == local_sense 

•  Single counter makes this a “centralized” barrier 



20 CS758 Multicore Programming (Wood) Synchronization 

Other Barrier Implementations 
•  Problem with centralized barrier 

•  All processors must increment each counter 
•  Each read/modify/write is a serialized coherence action 

•  Each one is a cache miss 
•  O(n) if threads arrive simultaneously, slow for lots of processors 

•  Combining Tree Barrier 
•  Build a logk(n) height tree of counters (one per cache block) 
•  Each thread coordinates with k other threads (by thread id)  
•  Last of the k processors, coordinates with next higher node in tree 
•  As many coordination address are used, misses are not serialized 
•  O(log n) in best case 

•  Static and more dynamic variants 
•  Tree-based arrival, tree-based or centralized release  

•  Also, hardware support possible (e.g., Cray T3E) 



21 CS758 Multicore Programming (Wood) Synchronization 

Barrier Performance (from 1991) 

From Mellor-Crummey & Scott, ACM TOCS, 1991 



22 CS758 Multicore Programming (Wood) Performance Tuning 

Locks 



23 CS758 Multicore Programming (Wood) Synchronization 

Common Parallel Idiom: Locking  

•  Protecting a shared data structure 

•  Example: parallel tree walk, apply f() to each node 
•  Global “set” object, initialized with pointer to root of tree 
Each thread, while (true):!

node* next = set.remove()!

if next == NULL: return    // terminate thread!

func(code->value)    // computationally intense function!

if (next->right != NULL):!

set.insert(next->right)!

if (next->left != NULL):!

set.insert(next->left)!

•  How do we protect the “set” data structure? 
•  Also, to perform well, what element should it “remove” each step? 



24 CS758 Multicore Programming (Wood) Synchronization 

Common Parallel Idiom: Locking  

•  Parallel tree walk, apply f() to each node 
•  Global “set” object, initialized with pointer to root of tree 
•  Each thread, while (true): 

acquire(set.lock_ptr)!
node* next = set.pop()!

release(set.lock_ptr)!
if next == NULL: !

return    // terminate thread!

func(node->value)    // computationally intense!
acquire(set.lock_ptr)!

if (next->right != NULL) !
set.insert(next->right)!

if (next->left != NULL) !

set.insert(next->left)!
release(set.lock_ptr)!

Put lock/unlock into 
pop() method? 

Put lock/unlock into 
insert() method? 



25 CS758 Multicore Programming (Wood) Synchronization 

Lock-Based Mutual Exclusion 

L 
O

C 
K 

W
A 
I 
T 
L 
O

C 
K 

L 
O

C 
K 

L 
O

C 
K 

W
A 
I 
T 

W
A 
I 
T 

t0	

 t1	

 t2	

 t3	





26 CS758 Multicore Programming (Wood) Synchronization 

Simple Boolean Spin Locks 

•  Simplest lock: 
•  Single variable, two states: locked, unlocked 
•  When unlocked: atomically transition from unlocked to locked 
•  When locked: keep checking (spin) until the lock is unlocked 

•  Busy waiting versus “blocking” 
•  In a multicore, busy wait for other thread to release lock 

•  Likely to happen soon, assuming critical sections are small 
•  Likely nothing “better” for the processor to do anyway 

•  In a single processor, if trying to acquire a held lock, block 
•  The only sensible option is to tell the O.S. to context switch 
•  O.S. knows not to reschedule thread until lock is released 

•  Blocking has high overhead (O.S. call) 
•  IMHO, rarely makes sense in multicore (parallel) programs   



27 CS758 Multicore Programming (Wood) Synchronization 

Test-and-Set Spin Lock (T&S) 

•  Lock is “acquire”, Unlock is “release” 

•  acquire(lock_ptr): 
While (true):!

// Perform “test-and-set” !

old = compare_and_swap(lock_ptr, UNLOCKED, LOCKED)!
if (old == UNLOCKED):!

break   // lock acquired!!

// keep spinning, back to top of while loop  

•  release(lock_ptr): 
Store[lock_ptr] <- UNLOCKED!

•  Performance problem 
•  CAS is both a read and write, spinning causes lots of invalidations 



28 CS758 Multicore Programming (Wood) Synchronization 

Test-and-Test-and-Set Spin Lock (TTS) 

•  acquire(lock_ptr): 
While (true):!

// Perform “test”!

Load [lock_ptr] -> original_value!
if (original_value == UNLOCKED): !

// Perform “test-and-set” !

old = compare_and_swap(lock_ptr, UNLOCKED, LOCKED)!
if (old == UNLOCKED):!

break   // lock acquired!!
// keep spinning, back to top of while loop !

•  release(lock_ptr): 
Store[lock_ptr] <- UNLOCKED 

•  Now “spinning” is read-only, on local cached copy 



29 CS758 Multicore Programming (Wood) Synchronization 

TTS Lock Performance Issues 

•  Performance issues remain 
•  Every time the lock is released… 
•  All the processors load it, and likely try to CAS the block 
•  Causes a storm of coherence traffic, clogs things up badly 

•  One solution: backoff 
•  Instead of spinning constantly, check less frequently 
•  Exponential backoff works well in practice 

•  Another problem with spinning 
•  Processors can spin really fast, starve threads on the same core! 
•  Solution: x86 adds a “PAUSE” instruction 

•  Tells processor to suspend the thread for a short time 

•  (Un)fairness 



30 CS758 Multicore Programming (Wood) Synchronization 

Ticket Locks 

•  To ensure fairness and reduce coherence storms 

•  Locks have two counters: next_ticket, now_serving 
•  Deli counter 

•  acquire(lock_ptr): 
my_ticket = fetch_and_increment(lock_ptr->next_ticket)!
while(lock_ptr->now_serving != my_ticket); // spin 

•  release(lock_ptr): 
lock_ptr->now_serving = lock_ptr->now_serving + 1!

(Just a normal store, not an atomic operation, why?) 

•  Summary of operation 
•  To “get in line” to acquire the lock, CAS on next_ticket 
•  Spin on now_serving 



31 CS758 Multicore Programming (Wood) Synchronization 

Ticket Locks 

•  Properties 
•  Less of a “thundering herd” coherence storm problem 

•  To acquire, only need to read new value of now_serving 
•  No CAS on critical path of lock handoff 

•  Just a non-atomic store 
•  FIFO order (fair) 

•  Good, but only if the O.S. hasn’t swapped out any threads! 

•  Padding 
•  Allocate now_serving and next_ticket on different cache blocks 

•  struct { int now_serving; char pad[60]; int next_ticket; } …   
•  Two locations reduces interference 

•  Proportional backoff 
•  Estimate of wait time: (my_ticket - now_serving) * average hold time  



32 CS758 Multicore Programming (Wood) Synchronization 

Array-Based Queue Locks 

•  Why not give each waiter its own location to spin on? 
•  Avoid coherence storms altogether! 

•  Idea: “slot” array of size N: “go ahead” or “must wait” 
•  Initialize first slot to “go ahead”, all others to “must wait” 
•  Padded one slot per cache block,  

•  Keep a “next slot” counter (similar to “next_ticket” counter) 

•  Acquire: “get in line” 
•  my_slot = (atomic increment of “next slot” counter) mod N 
•  Spin while slots[my_slot] contains “must_wait” 
•  Reset slots[my_slot] to “must wait” 

•  Release: “unblock next in line” 
•  Set slots[my_slot+1 mod N] to “go ahead” 



33 CS758 Multicore Programming (Wood) Synchronization 

Array-Based Queue Locks 

•  Variants: Anderson 1990, Graunke and Thakkar 1990 

•  Desirable properties 
•  Threads spin on dedicated location 

•  Just two coherence misses per handoff 
•  Traffic independent of number of waiters  

•  FIFO & fair (same as ticket lock) 

•  Undesirable properties 
•  Higher uncontended overhead than a TTS lock  
•  Storage O(N) for each lock 

•  128 threads at 64B padding: 8KBs per lock! 
•  What if N isn’t known at start? 

•  List-based locks address the O(N) storage problem 
•  Several variants of list-based locks: MCS 1991, CLH 1993/1994 



34 CS758 Multicore Programming (Wood) Synchronization 

List-Based Queue Locks (CLH lock) 
•  Link list node: 

•  Previous node pointer 
•  bool must_wait 

•  A “lock” is a pointer to a link list node 
•  Each thread has a local pointer to a node “I” 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (prev->must_wait)    // spin 

•  Release(L): 
•  pred = I->prev 
•  I->must_wait = false    // wakeup next waiter, if any 
•  I = pred    // take pred’s node 



35 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 0 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False False False False 

Lock	

 I1	

 I2	

 I3	





36 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 1 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False True False False 

Lock	

 I1	

 I2	

 I3	



•  t1: Acquire(L) 

t1 has lock	





37 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 2 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False True True False 

Lock	

 I1	

 I2	

 I3	



•  t1: Acquire(L) 
•  t2: Acquire(L) 

t1 has lock	

 t2 spin	





38 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 3 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False True True True 

Lock	

 I1	

 I2	

 I3	



•  t1: Acquire(L) 
•  t2: Acquire(L) 
•  t3: Acquire(L) 

t1 has lock	

 t2 spin	

 t3 spin	





39 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 4 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False False True True 

Lock	

 I1	

 I2	

 I3	



•  t1: Acquire(L) 
•  t2: Acquire(L) 
•  t3: Acquire(L) 
•  t1: Release(L) 

t2 has lock	

 t3 spin	





40 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 5 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False False False True 

Lock	

 I1	

 I2	

 I3	



•  t1: Acquire(L) 
•  t2: Acquire(L) 
•  t3: Acquire(L) 
•  t1: Release(L) 
•  t2: Release(L) 

t3 has lock	





41 CS758 Multicore Programming (Wood) Synchronization 

Queue Locks Example: Time 6 

•  Acquire(L): 
•  I->must_wait = true 
•  I->prev = fetch_and_store(L, I) 
•  pred = I->prev 
•  while (pred->must_wait) // spin 

•  Release (L): 
•  pred = I->prev 
•  I->must_wait = false 

False False False False 

Lock	

 I1	

 I2	

 I3	



•  t1: Acquire(L) 
•  t2: Acquire(L) 
•  t3: Acquire(L) 
•  t1: Release(L) 
•  t2: Release(L) 
•  t3: Release(L) 



42 CS758 Multicore Programming (Wood) Synchronization 

Lock Review & Performance 

•  Test-and-set 

•  Test-and-test-and-set 
•  With or without exponential backoff 

•  Ticket lock 

•  Array-based queue lock 
•  “Anderson” 

•  List-based queue lock 
•  “MCS” 



43 CS758 Multicore Programming (Wood) Synchronization 

Lock Performance 

From Mellor-Crummey & Scott, ACM TOCS, 1991 



44 CS758 Multicore Programming (Wood) Synchronization 

Other Lock Concerns 

•  Supporting “bool trylock(timeout)” 
•  Attempt to get the lock, give up after time 
•  Easy for simple TTS locks; harder for ticket and queue-based locks 

•  Reader/Writer locks 
•  lock_for_read(lock_ptr)    lock_for_write(lock_ptr) 
•  Many readers can all “hold” lock at the same time 
•  Only one writer (with no readers) 
•  Reader/Writer locks sound great!  Two problems: 

•  Acquiring a read lock requires read-modify-write of shared data 
•  Acquiring a read/write lock is slower than a simple TTS lock 

•  Other options: topology/hierarchy aware locks,  
adaptive hybrid TTS/queue locks, biased locks, etc.  


