Goals

- Data Parallelism: What is it, and how to exploit it?
 - Workload characteristics
- Execution Models / GPU Architectures
 - MIMD (SPMD), SIMD, SIMT
- GPU Programming Models
 - Terminology translations: CPU ↔ AMD GPU ↔ Nvidia GPU
 - Intro to OpenCL
- Modern GPU Microarchitectures
 - i.e., programmable GPU pipelines, not their fixed-function predecessors
- Advanced Topics: (Time permitting)
 - The Limits of GPUs: What they can and cannot do
 - The Future of GPUs: Where do we go from here?

Data Parallel Execution on GPUs

- Data Parallelism, Programming Models, SIMT

Graphics Workloads

- Streaming computation

- Streaming computation on pixels
Graphics Workloads

Identical, Independent, Streaming computation on pixels

Architecture Spelling Bee

Spell 'Independent'

Generalize: Data Parallel Workloads

Identical, Independent computation on multiple data inputs

Naïve Approach

Split independent work over multiple processors

Data Parallelism: A MIMD Approach

Multiple Instruction Multiple Data

Split independent work over multiple processors

When work is *identical* (same program),

Single Program Multiple Data (SPMD)
(Subcategory of MIMD)
Data Parallelism: An SPMD Approach

Single Program Multiple Data
Split identical, independent work over multiple processors

Data Parallelism: A SIMD Approach

Single Instruction Multiple Data
Split identical, independent work over multiple execution units (lanes)
More efficient: Eliminate redundant fetch/decode

SIMD: A Closer Look
One Thread + Data Parallel Ops → Single PC, single register file

Data Parallelism: A SIMT Approach

Single Instruction Multiple Thread
Split identical, independent work over multiple lockstep threads
Multiple Threads + Scalar Ops → One PC, Multiple register files

Terminology Headache #1
It’s common to interchange ‘SIMD’ and ‘SIMT’
Execution Model Comparison

<table>
<thead>
<tr>
<th>Execution Model</th>
<th>MIMD/SPMD</th>
<th>SIMD/Vector</th>
<th>SIMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example Architecture</td>
<td>Multicore CPUs</td>
<td>x86 SSE/AVX</td>
<td>GPUs</td>
</tr>
<tr>
<td>Pros</td>
<td>More general: supports TLP</td>
<td>Can mix sequential & parallel code</td>
<td>Easier to program Gather/Scatter operations, can mix seq. & parallel (kinda)</td>
</tr>
<tr>
<td>Cons</td>
<td>Inefficient for data parallelism</td>
<td>Gather/Scatter can be awkward</td>
<td>Divergence kills performance</td>
</tr>
</tbody>
</table>

GPUs and Memory

Recall: GPUs perform Streaming computation.

Streaming memory access

DRAM latency: 100s of GPU cycles.

How do we keep the GPU busy (hide memory latency)?

Hiding Memory Latency

Options from the CPU world:

- Need spatial/temporal locality
- Need ILP
- Need independent threads

Multicore Multithreaded SIMT

Many SIMT "threads" grouped together into GPU "Core".

SIMT threads in a group = SMT threads in a CPU core.
- Unlike CPU, groups are exposed to programmers.
- Multiple GPU "Cores".

This is a GPU Architecture (Whew!)

GPU Component Names
GPU Programming Models

OpenCL

GPU Programming Models

CUDA – Compute Unified Device Architecture
- Developed by Nvidia – proprietary
- First serious GPGPU language/environment

OpenCL – Open Computing Language
- From makers of OpenGL
- Wide industry support: AMD, Apple, Qualcomm, Nvidia (begrudgingly), etc.

C++ AMP – C++ Accelerated Massive Parallelism
- Microsoft
- Much higher abstraction than CUDA/OpenCL

OpenACC – Open Accelerator
- Like OpenMP for GPUs (semi-auto-parallelize serial code)
- Much higher abstraction than CUDA/OpenCL

OpenCL

Early CPU languages were light abstractions of physical hardware
- E.g., C

Early GPU languages are light abstractions of physical hardware
- OpenCL + CUDA

GPU Architecture

OpenCL

Early CPU languages were light abstractions of physical hardware
- E.g., C

Early GPU languages are light abstractions of physical hardware
- OpenCL + CUDA

GPU Architecture

OpenCL Model
NDRange

N-Dimensional (N = 1, 2, or 3) index space
- Partitioned into workgroups, wavefronts, and work-items

Kernel

Run an NDRange on a kernel (i.e., a function)
- Same kernel executes for each work-item
 - Smells like MIMD/SPMD

OpenCL Code

```c
__kernel
void flip_and_recolor(__global float3 **in_image,
                      __global float3 **out_image,
                      int img_dim_x, int img_dim_y)
{
    int x = get_global_id(1); // get work-item id in dim 1
    int y = get_global_id(2); // get work-item id in dim 2
    out_image[img_dim_x - x][img_dim_y - y] =
        recolor(in_image[x][y]);
}
```

GPU Microarchitecture

AMD Graphics Core Next

GPU Hardware Overview
Compute Unit – A GPU Core

Compute Unit (CU) — Runs Workgroups
- Contains 4 SIMT Units
- Picks one SIMT Unit per cycle for scheduling

SIMT Unit — Runs Wavefronts
- Each SIMT Unit has 10 wavefront instruction buffer
- Takes 4 cycles to execute one wavefront

10 Wavefront x 4 SIMT Units = 40 Active Wavefronts / CU
64 work-items / wavefront x 40 active wavefronts = 2560 Active Work-items / CU

SIMT Unit – A GPU Pipeline

Like a wide CPU pipeline — except one fetch for entire width
16-wide physical ALU
- Executes 64-wavefront over 4 cycles. Why??
64KB register state / SIMT Unit
- Compare to x86 (Bulldozer): ~1KB of physical register file state (~1/64 size)

Address Coalescing Unit
- A key to good memory performance

Address Coalescing

Wavefront: Issue 64 memory requests
Common case:
- work-items in same wavefront touch same cache block

Coalescing
- Merge many work-items requests into single cache block request

Important for performance:
- Reduces bandwidth to DRAM

GPU Memory

GPUs have caches.
Not Your CPU’s Cache

By the numbers: Bulldozer – FX-8170 vs. GCN – Radeon HD 7970

<table>
<thead>
<tr>
<th></th>
<th>CPU (Bulldozer)</th>
<th>GPU (GCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 data cache capacity</td>
<td>16KB</td>
<td>16 KB</td>
</tr>
<tr>
<td>Active threads (work-items) sharing L1 D Cache</td>
<td>1</td>
<td>2560</td>
</tr>
<tr>
<td>L1 dcache capacity / thread</td>
<td>16KB</td>
<td>6.4 bytes</td>
</tr>
<tr>
<td>Last level cache (LLC) capacity</td>
<td>8MB</td>
<td>768KB</td>
</tr>
<tr>
<td>Active threads (work-items) sharing LLC</td>
<td>8</td>
<td>81,920</td>
</tr>
<tr>
<td>LLC capacity / thread</td>
<td>1MB</td>
<td>9.6 bytes</td>
</tr>
</tbody>
</table>

GPU Caches

Maximize throughput, not hide latency
- Not there for either spatial or temporal locality

L1 Cache: Coalesce requests to same cache block by different work-items
- Keep block around just long enough for each work-item to hit once
- Ultimate goal: Reduce bandwidth to DRAM

L2 Cache: DRAM staging buffer + some instruction reuse
- Ultimate goal: Tolerate spikes in DRAM bandwidth

If there is any spatial/temporal locality:
- Use local memory (scratchpad)

Scratchpad Memory

GPUs have scratchpads (Local Memory)
- Separate address space
- Managed by software:
 - Rename address
 - Manage capacity – manual fill/eviction

Allocated to a workgroup
- i.e., shared by wavefronts in workgroup

Example System: Radeon HD 7970

High-end part

32 Compute Units:
- 83,200 Active work-items
- 32 CUs * 4 SIMT Units * 16 ALUs = 2048 Max FP ops/cycle
- 264 GB/s Max memory bandwidth
- 925 MHz engine clock
- 3.79 TFLOPS single precision (accounting trickery: FMA)

210W Max Power (Chip)
- >350W Max Power (card)
- 100W idle power (card)

Radeon HD 7990 - Cooking

Two 7970s on one card:
375W (AMD Official) – 450W (OEM)

A Rose by Any Other Name...
Terminology Headaches #2-5

<table>
<thead>
<tr>
<th>Nvidia/CUDA</th>
<th>AMD/OpenCL</th>
<th>Derek’s CPU Analogy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Cluster?</td>
<td>SIMD Unit</td>
<td>Core</td>
</tr>
<tr>
<td>GPU Device</td>
<td>GPU Device</td>
<td>Device</td>
</tr>
</tbody>
</table>

Terminology Headaches #6-9

<table>
<thead>
<tr>
<th>CUDA/Nvidia</th>
<th>OpenCL/AMD</th>
<th>Henri&Patt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread</td>
<td>Work-item</td>
<td>Sequence of SIMD Lane Operations</td>
</tr>
<tr>
<td>Warp</td>
<td>Wavefront</td>
<td>Thread of SIMD Instructions</td>
</tr>
<tr>
<td>Block</td>
<td>Workgroup</td>
<td>Body of vectorized loop</td>
</tr>
<tr>
<td>Grid</td>
<td>NDRange</td>
<td>Vectorized loop</td>
</tr>
</tbody>
</table>

Terminology Headache #10

GPUs have scratchpads (Local Memory)
- Separate address space
- Managed by software:
 - Rename address
 - Manage capacity – manual fill/eviction

Allocated to a workgroup
- I.e., shared by wavefronts in workgroup

Nvidia calls ‘Local Memory’ ‘Shared Memory’. AMD sometimes calls it ‘Group Memory’.

Recap

- **Data Parallelism**: Identical, Independent work over multiple data inputs
 - GPU version: Add streaming access pattern
- **Data Parallel Execution Models**: MIMD, SIMD, SIMT
- **GPU Execution Model**: Multicore Multithreaded SIMT
 - NDRange over workgroup/wavefront

Modern GPU Microarchitecture: AMD Graphics Core Next (GCN)
- Compute Unit ("GPU Core"): 4 SIMT Units
- SIMT Unit ("GPU Pipeline"): 16-wide ALU pipe (16x4 execution)
- Memory: designed to stream

GPUs: Great for data parallelism. Bad for everything else.

SIMT Control Flow

Consider SIMT conditional branch:
- One PC
- Multiple data (i.e., multiple conditions)

```java
if (x <= 0)
  y = 0;
else
  y = x;
```
SIMT Control Flow

Work-items in wavefront run in lockstep
- Don't all have to commit

Branching through predication

Active lane: commit result
Inactive lane: throw away result

if \(x \leq 0\)
\[y = 0;\]
else
\[y = x;\]

Branch divergence

__global int lock = 0;
void mutex_lock()
{
 // acquire lock
 while (test&set(lock, 1) == false) {
 // spin
 }
 return;
}

Beware!

Divergence isn't just a performance problem:

Deadlock: work-items can't enter mutex together!

Memory Bandwidth

\(\checkmark\) -- Parallel Access
Memory Bandwidth

Memory divergence

× -- Uncoalesced Access

Memory Bandwidth

Memory divergence

× -- Sequential Access

Memory Divergence

One work-item stalls → entire wavefront must stall
× Cause: Bank conflicts, cache misses
Data layout & partitioning is important

Divergence Kills Performance

Communication and Synchronization

Work-items can communicate with:
- Work-items in same wavefront
 × No special sync needed, they are lockstep
- Work-items in different wavefront, same workgroup (local)
 × Local barrier
- Work-items in different wavefront, different workgroup (global)
 × OpenCL: `synchronize`
 × CUDA 8+ feels, but complicated

GPU Consistency Models

Very weak guarantee:
- Program order respected within single work-item
- All other bets are off
Safety net:
- Fence – "make sure all previous accesses are visible before proceeding"
- Built-in barriers are also fences
A wrench:
- GPU fences are scoped – only apply to subset of work-items in system
 × E.g., local barrier

Take-away: confusion abounds
GPU Coherence?

Notice: GPU consistency model does not require coherence
- i.e., Single Writer, Multiple Reader

Marketing claims they are coherent...

GPU "Coherence":
- Nvidia: disable private caches
- AMD: flush/invalidate entire cache at fences

GPU Architecture Research

Blending with CPU architecture:
- Dynamic scheduling / dynamic wavefront re-org
- Work-items have more locality than we think

Tighter integration with CPU on SOC:
- Fast kernel launch
 - Explicit fine-grained parallel region: Remember Amdahl's law
 - Common shared memory

Reliability:
- Historically: Who notices a bad pixel?
- Future: GPU compute demands correctness

Power:
- Mobile, mobile mobile!!!

Computer Economics 101

GPU Compute is cool + gaining steam, but...
- Is a 0 billion dollar industry (to quote Mark Hill)

GPU design priorities:
1. Graphics
2. Graphics
- ...
N-1. Graphics
N. GPU Compute

Moral of the story:
- GPU won't become a CPU (nor should it)