
The Jrpm System for Dynamically Parallelizing Java Programs

Summary:
 Previous work has shown the benefits of thread level-speculation. These papers
built a run-time system to detect the dependencies between the speculatively scheduled
threads and had mechanisms to recover from a dependency violation. The ideal
candidates for speculative threads were function calls and loops. These papers either
identified the prospective candidates either manually or by static techniques using the
compiler. The compiler identified potential threads and annotated the binary with the
thread information. This paper focuses on identifying threads at runtime. The authors
have developed a hardware profiler that profiles the code at runtime and identifies
candidate threads and then the code is dynamically recompiled with the speculation
information.

Details:
 The runtime profiler and threading system is built around a Java runtime
environment. On identifying the prospective speculative thread loops based on the
information gathered from the profiler, the code is dynamically compiled. This was
feasible because of the java runtime system. The java bytecodes were dynamically
recompiled into the native architecture.
 Runtime profiling is done by instrumenting the code. Some special instructions used
by the runtime hardware profiler are added during the compilation. There hardware
profiler looks for potential dependencies between threads using timestamp counters. It
also looks at the amount of speculative state that needs to be buffered. Candidates are
chosen based on this information to incur low overhead during speculative execution.
The paper also provides some optimizations that contributed to performance gains
significantly. The hardware profiler picked those loads and stores that frequently caused a
dependence violation and introduced synchronization between those and loads and stores
in the dynamically recompiled code. The authors found that in such cases the overhead of
synchronization was much less than that of squashing the thread.
 They also provide other optimizations like allocating loop invariants in registers. They
also provide mechanisms to compute reduction operations locally and merge them at the
end. Another contribution made by the authors is a parallel garbage collector.
 The authors show some speedups due to this mechanism and also acknowledge the
fact that the hardware profiling which is done during the sequential execution does slow
down execution.

Some issues:
 In this paper the authors profile the code at runtime at the start of the
program. This information is used to capture the threads. Once this done the rest of the
execution is done based on this information. This approach might fail if the program
exhibits phased behavior. The speculative thread candidates chosen initially may not be
good candidates in another phase of the program. The authors should have detected phase
changes based on IPC or other means and then re-profiled the code.

 The paper does not clearly provide the hardware mechanisms used to detect the
load dependencies using time-stamp counters.
 Jrpm does not support TLS in the kernel and hence I/O intensive programs that
have a lot of system call activity and spend a lot of time in the kernel do not benefit from
this mechanism.

