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The CMP Cache Coherency Question 
 

Introduction 
 
Chip Multiprocessors (CMPs) have several characteristics that raise interesting questions 
pertaining to chip design, especially design related to the memory hierarchy.  With 
several processing nodes and their respective caches on-chip, the division and structure of 
off-chip and on-chip memory has more flexibility and variety than previously studied 
processor systems.  In addition, an increased number of processing nodes on-chip 
independently generating a number of memory requests implies that off-chip pin 
bandwidth becomes an expensive commodity.  Cache coherence protocols are directly 
affected by the described circumstances and are the focus of this paper. In particular, the 
tradeoffs between inclusive, exclusive and non-inclusive policies in a single CMP with a 
shared L2 are studied in detail.  Throughout the study, a focus is given to minimizing off-
chip bandwidth while sustaining or improving performance on-chip 
 
Three intuitively obvious coherence protocol schemes were assessed in this study:  
Inclusion, Non-inclusion, and Exclusion.  Multilevel inclusion is maintained when the 
contents of the L1 caches are a subset of the L2 caches.  Therefore, if a block is replaced 
in the L2 cache due to a conflict or capacity miss, that same block must be evicted in all 
of the L1’s in which it is present.  In the case of a single processor chip, this can only be 
the instruction or the data cache but as the number of cores increases, the evicted block 
could be present in multiple data and/or instruction caches.  Exclusion is the other 
extreme.  From a processing node’s perspective, the data that is present in its L1 cache 
cannot be present in the L2 cache. Non-Inclusion lies in between the two.  A block can be 
present in both the L1 and L2 or one or the other.   
 
The most commonly implemented policy in processors today is inclusion.  IBM carried 
this tradition into the realm of CMPs by implementing it in the IBM Power4 CMP 
(Barosso et al).  Conversely, however, Compaq’s CMP design, the Piranha (Tendler et al), 
chose a policy of exclusion.  It is worth noting, that with the sizes set by the L1 and 
shared L2, if an inclusion was specified, the L2 would be entirely taken up with L1-
replicated data.  To utilize cache space, an exclusion policy was specified and shadow 
tags were added to the L2, effectively doubling the on-chip cache size.  The shadow tags 
contained information about what data blocks were contained the L1’s.  The differing 
opinions within industry are evident, and thus deserve scientific evaluation. 
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The goal of this project is to evaluate a range of cache inclusion policies to see which 
performed best in terms of miss statistics for a variety of commercial workloads.    As a 
basis, a protocol that maintained strict multilevel inclusion, provided by the MultiFacet 
team, was used.   From there exclusion and non-inclusion protocols were developed for 
evaluation.  The non-inclusion and exclusion protocols were attempted, and though 
successful under a variety of configurations in the protocol tester running upward to 10 
million memory transactions, they did not work in SIMICs.  Shortly before the project 
deadline, a newly developed non-inclusion protocol by Mike Marty was used.  Although 
this protocol is still buggy, it ran long enough to collect some data for 4 processor 
configurations.  Our hypothesis is that as the ratio of L1 to L2 cache sizes increases, an 
inclusive protocol will begin to hurt performance making it worthwhile to consider a non-
inclusive or exclusive protocol.    
 

Cache Coherency Protocols 
 
Inclusion: 
The baseline protocol used maintained strict multilevel inclusion.  This protocol was 
provided with the initial release of the simulator.  Multilevel inclusion has been the 
standard in cache inclusion policies in processors to date with the exception of the 
aforementioned Piranha.  The problem of conflict/capacity misses negatively affecting 
performance by evicting blocks from the L1 cache is much less significant in 
uniprocessors since there are only two L1 caches competing for space in the L2 cache.  
This limited competition in a uniprocessor does not warrant the increased complexity that 
comes with not enforcing inclusion.  In this protocol, the L1 cache design is relatively 
simple and straightforward and more complexity exists at the L2 cache.  The L1 cache 
has the following states: modified, shared and invalid.  The L2 cache has the following 
states: modified, owned, owned with L1 sharers, shared, shared with L1 sharers and 
modified in the L1 but stale in the L2.  The number of states required for the L2 cache in 
this protocol is slightly more than that of a traditional shared memory multiprocessor 
protocol.   
 
Some of the benefits of this protocol are that it is simpler than the other two protocols 
presented below.  Inter-chip communication is easier since all of the on-chip data is 
automatically contained with the L2 cache.  A strict inclusive protocol does not require 
that remote chips snoop the L1 tags.  The main drawback, which was described above, is 
the fact that multilevel inclusion does not effectively exploit the total available cache 
capacity on chip due to the conflict of data at the second level of cache.   
 
Non-Inclusion: 
The second protocol considered was a non-inclusion protocol.  We spent a significant 
amount of time trying to develop our own working protocol, but Mike Marty was able to 
provide us with one before we had ours working.  Learning SLICC presented a number of 
challenges and we were not able to overcome.  This protocol added owned and exclusive 
states to the L1 cache.  A set of L1 shadow tags were added at the L2 cache to provide 
coherency information to the other on-chip L1 caches as well as to external requests.  
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These shadow tags increased the complexity at the L2 level and required a significant 
number of additional states.  The benefits of a non-inclusive protocol are that it increases 
the effective on chip cache storage and provides low latency cache transfers between L1 
caches.  Transfers between the L1 caches of different on-chip cores need to go through 
the L2 cache but this latency is still significantly less than having to travel out to memory.   
 
This protocol also reduces the off-chip cache bandwidth requirements as more of the 
requested data is likely to be found on chip.  However, this policy is not without its 
drawbacks.  The additional communication from the L2 cache to the L1 cache for data 
consumes additional bandwidth and causes additional contention for the L1 cache ports.  
Non-inclusion also complicates write-back over an inclusion protocol.  When a dirty 
block needs to be written back from an L1 cache, it is quite possible that the block is no 
longer present in the L2 cache.  A writeback requires that a block be allocated for the data 
when it comes from the L1 cache.  As mentioned before, the final drawback is the 
increased complexity in both the level one states and the addition of the shadow tags at 
the second level of cache.   
 
Exclusion: 
The third and final protocol explored was an exclusion based protocol.  As briefly 
described earlier, from a processing node’s perspective, the data exists in either the L1 or 
the L2, but never both simultaneously.  Because blocks only exist in the L2 when they are 
expelled via capacity and conflict misses, the L2 effectively acts as a large victim cache 
with data in Modified, Exclusive, or Invalid State.  Besides being a large victim cache the 
L2 behaves as a central point for synchronizing the L1s communication by having all 
requests and responses pass through it.  Such a protocol gives the L2 the opportunity to 
observe all of the L1s requests for use in off-chip coherency communication and 
effectively directing on-chip requests and responses.  When a request is received from an 
L1 at the L2, the data may exist in the L2, in the shadow tag cache of L1 tags, or 
somewhere beyond the on-chip memory hierarchy.  In each case, the request is directed 
to the appropriate place and a data response is sent back.  Depending on what information 
the L2 and shadow tags have, data sent to back to the requesting L1 arrives in Shared 
with another L1 Modified/Clean, Modified, or Exclusive  In the transient period while 
requests are being sent and responses collected, the L2’s data block remains held as a 
lock.   
 
The main perk of the exclusion protocol, and why the authors suspect the Piranha used it, 
is its utilization of space on chip.  Very little data is replicated, allowing a larger quantity 
of unique data to be present compared to the two alternative protocols presented in this 
study.  In the scenario when a processing node is accessing data in another processing 
node’s L1, 2 hops must be made to arrive at the data (L1a  L2  L1b), versus 
inclusion’s 1 hop (L1a  L2).  Though this is more expensive for the Exclusion protocol 
in this scenario, having the extra data on-chip saves at other times when the exclusion 
protocol may perform 2 hops to obtain the data while the Inclusion must go off-chip for 
data expelled from the L2 for capacity reasons.   
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The exclusion protocol, while very attractive for space utilization reasons, does have a 
handful of drawbacks.  The position of a block, whether it is in the L1 or the L2, may be 
independent of how a single processing node is accessing it.  That is, if 2 processing 
nodes are sharing a block, and one expels it from their L1 for capacity reasons, the other 
one, regardless of how heavily they may be using it, must also expel it, only to, perhaps, 
request it back into the L1 immediately after writing it back.  In addition to this 
theoretical drawback, the implementation of the exclusion protocol is quite complex.  The 
L2 may direct a request to get data from an L1, but when the request arrives there, that L1 
may be in the processing of writing it back.  Several solutions to this exist, such as 
requiring an L1 who wishes a writeback to put the L2 block in a transient ‘lock’ state 
before writing back, or immediately satisfying the data request, and then in some manner 
canceling the writeback that will arrive at the L2 (if the writeback were permitted to take 
place, and L1 and L2 could simultaneously hold the data). 
 

Experiments 
 
The experiments were designed to determine at what configuration each coherency 
protocol was preferable.  For all of experiments, oltp ran for 50 transactions and jbb ran 
for 5,000 transactions.  We varied the size of the L1 caches to change the ratio of the total 
L1 cache size to the total L2 cache size.  All data is presented for a single chip, 4 
processor CMP system.  Given more time, it would be interesting to also vary the number 
of processors in the configuration but for this study our protocol implementation limited 
the number of processors ran and how long they ran.  The goal was to find the design 
point at which having an inclusive protocol might hurt performance or where the 
performance of a non-inclusive protocol is significantly improved over the base inclusion 
case such that the complexity is warranted.  Even for relatively small L1 caches, when 
there is a large number of cores that aggregate, L1 size can add up.  In a 4-processor 
configuration, a 2 MB L2 cache was simulated.  This cache size allowed use of 
reasonable L1 cache sizes that amounted to a significant percentage of the L2 cache size.   
 
The second experiment ran was designed to approximate the performance of an exclusive 
protocol.  A set of experiments was run that added the total aggregate L1 cache size to the 
L2 cache size to determine if the extra capacity given to the system by an exclusion 
policy would result in any improvement in the cache performance for a 4-processor and 
8-processor configuration.  The baseline simulation with 4 processors had 2 MB of L2 
cache and was 4-way set associative.  The pseudo-exclusion experiment added 512KB of 
cache to the second level.  The 8 processor configuration was run with 4 and 5 MB of L2 
cache.   
 

Results 
 
The first graph shows the misses per thousand instructions for the inclusive and non-
inclusive protocol run for oltp and jbb.  Each cluster of bars represents an increase in L1 
cache size.  Our L1 cache sizes range from 8KB to 256KB.  Although 256KB is large for 
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a L1 cache the intention was to show the extreme data point where the aggregate L1 
cache size was equal to the L2 cache size.  There is a jump in miss rate for the inclusive 
protocol when the L1 to L2 ratio goes from 25 to 50 % for both benchmarks.  These data 
points could be valid design points or just artifacts of the simulation.  These simulations 
are non-deterministic and at the time of the presentation, time permitted a limited run of 
data, thus one cannot be completely convinced that this is reliable data.  Subsequently 
simulations were rerun for one of the data points in questions, specifically the 
configuration when the L1 cache size is 50% of the L2 cache size for oltp.  Here is a 
graph presenting the miss rates since adding the extra capacity should improve those; 
however the trend for the ruby cycles for each data point is similar to the trend presented 
in the miss rate graphs.   

 
 
One thing to note about the non-inclusive data points is that the miss rate presented only 
accounts for misses that need to go off chip to memory.  Since the latency of these misses 
is the same as those misses presented in the inclusive case we felt that it was a fair 
comparison.  The data does not account for local requests that miss in the L2 but can be 
satisfied by another on-chip L1.  From the runs done, one can see from the inclusion 
protocol data that after the L1 cache size reaches 25% of the L2 cache size, the miss rate 
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Figure 1: Misses per Thousand Instruction for Inclusion and Non-
Inclusion protocols 
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starts to increase. We believe that at this point, and possibly sooner is when a non-
inclusion protocol would be a better design choice.  Also worth noting is that at all points, 
the off-chip miss rate of the non-inclusive protocol is better than that of the inclusion 
protocol so the question of implementing a non-inclusive protocol seems to be more one 
of complexity than performance.  Is the benefit worth the additional design time and 
complexity? Figure 2 presents the same data as Figure 1 but the top part of the stacked 
bar has been added.  This stacked bar represents the L1 misses that are satisfied locally 
by another L1.  In some cases the total misses in the non-inclusion case are higher than in 
the inclusive case but this is believed to just be an artifact of simulation and more runs 
would produce data where the total misses in the inclusive case are closer to that of the 
base case.  This data is presented because we felt it interesting to note that some of the 
stacked bars are significantly lower than the total miss rate in the base case.  This 
indicates that by not enforcing inclusion, many misses are satisfied by the requesting 
processor’s L1.  Initially, the belief was this would often be the case.  But as the results 
show, most of the stacked bars come very close to the base case indicating that a 
significant portion of the misses are satisfied by other on-chip processing node’s L1s and 
not satisfied by the requesting processor’s L1.  This is a very interesting result because it 
indicates that keeping data on-chip longer will benefit more cores by giving them lower 
latency miss times.     
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Figure 3 presents data from our pseudo-exclusion experiment described above.  The 
question arises, why does OLTP see so little improvement from the extra capacity when 
it sees a more significant improvement from non-inclusion?  Intuitively, the numbers 
should be more similar.  There are two possibilities for this result.  First is the previously 
mentioned non-deterministic nature of simulation and the data presented could be an 
artifact of simulation.  The second explanation relates to the associatively of the caches 

Figure 2: Miss rates including locally satisfied misses for Non-Inclusion 
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simulated.  For the non-inclusive simulations since each of the L1 caches is 2 way 
associative and there are 8 L1 caches, we effectively add 16 ways of associatively to the 
on-chip cache storage.  However, in order to get an odd cache size from SIMICs, we 
simply added on additional way of associativity to the L2 cache increasing its 
associativity from 4 to 5.  This large discrepancy in the associativity makes it very 
difficult to compare these results and reach an accurate conclusion.  Unfortunately, from 
the way in which ruby creates its caches, another way to generate an odd sized cache was 
not discovered, so this experiment best served the approximation without a working 
exclusion protocol.   
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Discussion 
 
Evaluating inclusion policies for the caches is not as simple as improving miss rates and 
performance.  There are several other issues that need to be considered when deciding to 
switch from a strict inclusion protocol to a non-inclusive protocol or an exclusive 
protocol.  Two issues that might limit performance of a non-inclusive or exclusive 
protocol that were not modeled in our study are the L2 to L1 bandwidth and the ports in 
to L1.  Sending additional requests from the L2 to the L1 because they cannot be satisfied 
by the L2 requires additional bandwidth and may limit the effectiveness of non-inclusion 
or exclusion.  Also, the number of ports into the L1 could be a point of contention if the 
L2 is forwarded a significant number of requests to the L1 while that L1’s processor is 
also trying to access the cache.  Adding additional ports to the L1 might not be a 
desirable solution since adding ports increases the area of the cache and negatively 
impacts its access time.   

Figure 3: Pseudo Exclusion Experiment Results 
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As the protocols get further from inclusion and closer to exclusion, complexities arise.  
This is due to a combination of factors, the most basic is that the protocols were adapted 
from a provided inclusion protocol, and as more changes were made, the fragility of the 
protocol increased.  In addition, the protocols theoretically become more complex the 
further from inclusion they are.  Exclusion, for example, requires the L1’s to synchronize 
with the L2’s to enforce exclusion at all times.  For example, an exclusion 
implementation must ensure that a writeback generated by an L1 does not violate 
exclusion when it finally arrives at the L2. 
 
The presented study focused on single chip systems.  This assumption was made for a 
few reasons.  One, a clear target system was never specified, and it was assumed that 
CMPs have a viable market in single chip configuration.  Secondly, and more importantly, 
the time was not available to explore all of the issues and code complexity associated 
with making our protocols work for multiple chips.  Running in multiple chip 
configurations would have also made it difficult to study in isolation the on-chip effects 
of the protocols.  Another interesting question arises when you add multiple chips. Does 
extending the life of a block on chip hurt the performance of remote chips?  Seeking the 
answer to this interesting question has been left for future work. 
 
Two of the three protocols studied use shadow tags.  For the configuration studied, the 
shadow tags consumed from 1.4% of the total cache area (including tags, line information, 
and data) for the smallest L1s modeled to 22% of the total cache area for the largest L1s 
modeled.  The results for the largest L1s modeled are comparable to Piranha’s cache 
configuration and its published estimate of  25% of the cache area consumed by shadow 
tags (Barroso et al).   Clearly, the larger the L1 and the more L1s present, the larger the 
tag cache.  However, since the L2 behaves as a victim cache, perhaps there is a limit to its 
usability and the space is best spent in large L1s, despite the increased tag cache that goes 
along with it. 
  

Limitations 
 
We acknowledge that this study suffers from a few limitations.  First, data is presented 
for only 2 workloads.  While more workloads were attempted, not all of these runs 
completed successfully for a variety of reasons.  A complete set of data points for both 
oltp and jbb were obtained and presented above.  Secondly, the runs were shorter than 
anticipated due to time constraints of the presentation and final report.  Thirdly, 
significant amount of time was spent coding in SLICC, which limited the time left to run 
simulations.  As mentioned above, these runs are non-deterministic which means that a 
single data point is not necessarily representative.  Due to time constraints most data 
points are only single runs and we feel confident that they represent an accurate trend for 
the data.  However, a few data point were re-run multiple times to determine if the initial 
run was accurate or if it was incorrect due to an artifact of the simulation infrastructure.  
All of the above lead to mildly inconclusive results; however, we feel that the trends are 
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accurate and that this project was a great learning experience because it considered many 
of the issues involved in maintaining or not maintaining inclusion in the cache hierarchy. 
 

Conclusions 
 
The studies and analysis presented above have brought forth interesting observations and 
many avenues for future research.  Notably, alternatives to a strict inclusive protocol are 
worthwhile avenues of research in CMP systems.  A single-chip CMP system, similar to 
the one studied here, indicates that extending the life of a data block on chip and 
satisfying requests on-chip whenever possible in a seemingly efficient manner is 
worthwhile for the workloads evaluated.  However, the complexity in the protocol’s 
implementation is still a serious drawback and would benefit greatly from further 
research into a simple non-inclusive or exclusive protocol. 
 
Although inclusion protocols in a single chip environment were studied, the authors 
speculate that the benefits seen in non-inclusion and exclusion will persist in a multi-chip 
environment at the cost of additional complexity and drawbacks.  Weighing the 
performance benefit of such protocols versus the additional development complexity will 
be interesting further research. 
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