
Enright, Vantrease Page 1 of 10

Natalie Enright
Dana Vantrease

CS 838
Final Report

To Include or Not To Include:

The CMP Cache Coherency Question

Introduction

Chip Multiprocessors (CMPs) have several characteristics that raise interesting questions
pertaining to chip design, especially design related to the memory hierarchy. With
several processing nodes and their respective caches on-chip, the division and structure of
off-chip and on-chip memory has more flexibility and variety than previously studied
processor systems. In addition, an increased number of processing nodes on-chip
independently generating a number of memory requests implies that off-chip pin
bandwidth becomes an expensive commodity. Cache coherence protocols are directly
affected by the described circumstances and are the focus of this paper. In particular, the
tradeoffs between inclusive, exclusive and non-inclusive policies in a single CMP with a
shared L2 are studied in detail. Throughout the study, a focus is given to minimizing off-
chip bandwidth while sustaining or improving performance on-chip

Three intuitively obvious coherence protocol schemes were assessed in this study:
Inclusion, Non-inclusion, and Exclusion. Multilevel inclusion is maintained when the
contents of the L1 caches are a subset of the L2 caches. Therefore, if a block is replaced
in the L2 cache due to a conflict or capacity miss, that same block must be evicted in all
of the L1’s in which it is present. In the case of a single processor chip, this can only be
the instruction or the data cache but as the number of cores increases, the evicted block
could be present in multiple data and/or instruction caches. Exclusion is the other
extreme. From a processing node’s perspective, the data that is present in its L1 cache
cannot be present in the L2 cache. Non-Inclusion lies in between the two. A block can be
present in both the L1 and L2 or one or the other.

The most commonly implemented policy in processors today is inclusion. IBM carried
this tradition into the realm of CMPs by implementing it in the IBM Power4 CMP
(Barosso et al). Conversely, however, Compaq’s CMP design, the Piranha (Tendler et al),
chose a policy of exclusion. It is worth noting, that with the sizes set by the L1 and
shared L2, if an inclusion was specified, the L2 would be entirely taken up with L1-
replicated data. To utilize cache space, an exclusion policy was specified and shadow
tags were added to the L2, effectively doubling the on-chip cache size. The shadow tags
contained information about what data blocks were contained the L1’s. The differing
opinions within industry are evident, and thus deserve scientific evaluation.

Enright, Vantrease Page 2 of 10

The goal of this project is to evaluate a range of cache inclusion policies to see which
performed best in terms of miss statistics for a variety of commercial workloads. As a
basis, a protocol that maintained strict multilevel inclusion, provided by the MultiFacet
team, was used. From there exclusion and non-inclusion protocols were developed for
evaluation. The non-inclusion and exclusion protocols were attempted, and though
successful under a variety of configurations in the protocol tester running upward to 10
million memory transactions, they did not work in SIMICs. Shortly before the project
deadline, a newly developed non-inclusion protocol by Mike Marty was used. Although
this protocol is still buggy, it ran long enough to collect some data for 4 processor
configurations. Our hypothesis is that as the ratio of L1 to L2 cache sizes increases, an
inclusive protocol will begin to hurt performance making it worthwhile to consider a non-
inclusive or exclusive protocol.

Cache Coherency Protocols

Inclusion:
The baseline protocol used maintained strict multilevel inclusion. This protocol was
provided with the initial release of the simulator. Multilevel inclusion has been the
standard in cache inclusion policies in processors to date with the exception of the
aforementioned Piranha. The problem of conflict/capacity misses negatively affecting
performance by evicting blocks from the L1 cache is much less significant in
uniprocessors since there are only two L1 caches competing for space in the L2 cache.
This limited competition in a uniprocessor does not warrant the increased complexity that
comes with not enforcing inclusion. In this protocol, the L1 cache design is relatively
simple and straightforward and more complexity exists at the L2 cache. The L1 cache
has the following states: modified, shared and invalid. The L2 cache has the following
states: modified, owned, owned with L1 sharers, shared, shared with L1 sharers and
modified in the L1 but stale in the L2. The number of states required for the L2 cache in
this protocol is slightly more than that of a traditional shared memory multiprocessor
protocol.

Some of the benefits of this protocol are that it is simpler than the other two protocols
presented below. Inter-chip communication is easier since all of the on-chip data is
automatically contained with the L2 cache. A strict inclusive protocol does not require
that remote chips snoop the L1 tags. The main drawback, which was described above, is
the fact that multilevel inclusion does not effectively exploit the total available cache
capacity on chip due to the conflict of data at the second level of cache.

Non-Inclusion:
The second protocol considered was a non-inclusion protocol. We spent a significant
amount of time trying to develop our own working protocol, but Mike Marty was able to
provide us with one before we had ours working. Learning SLICC presented a number of
challenges and we were not able to overcome. This protocol added owned and exclusive
states to the L1 cache. A set of L1 shadow tags were added at the L2 cache to provide
coherency information to the other on-chip L1 caches as well as to external requests.

Enright, Vantrease Page 3 of 10

These shadow tags increased the complexity at the L2 level and required a significant
number of additional states. The benefits of a non-inclusive protocol are that it increases
the effective on chip cache storage and provides low latency cache transfers between L1
caches. Transfers between the L1 caches of different on-chip cores need to go through
the L2 cache but this latency is still significantly less than having to travel out to memory.

This protocol also reduces the off-chip cache bandwidth requirements as more of the
requested data is likely to be found on chip. However, this policy is not without its
drawbacks. The additional communication from the L2 cache to the L1 cache for data
consumes additional bandwidth and causes additional contention for the L1 cache ports.
Non-inclusion also complicates write-back over an inclusion protocol. When a dirty
block needs to be written back from an L1 cache, it is quite possible that the block is no
longer present in the L2 cache. A writeback requires that a block be allocated for the data
when it comes from the L1 cache. As mentioned before, the final drawback is the
increased complexity in both the level one states and the addition of the shadow tags at
the second level of cache.

Exclusion:
The third and final protocol explored was an exclusion based protocol. As briefly
described earlier, from a processing node’s perspective, the data exists in either the L1 or
the L2, but never both simultaneously. Because blocks only exist in the L2 when they are
expelled via capacity and conflict misses, the L2 effectively acts as a large victim cache
with data in Modified, Exclusive, or Invalid State. Besides being a large victim cache the
L2 behaves as a central point for synchronizing the L1s communication by having all
requests and responses pass through it. Such a protocol gives the L2 the opportunity to
observe all of the L1s requests for use in off-chip coherency communication and
effectively directing on-chip requests and responses. When a request is received from an
L1 at the L2, the data may exist in the L2, in the shadow tag cache of L1 tags, or
somewhere beyond the on-chip memory hierarchy. In each case, the request is directed
to the appropriate place and a data response is sent back. Depending on what information
the L2 and shadow tags have, data sent to back to the requesting L1 arrives in Shared
with another L1 Modified/Clean, Modified, or Exclusive In the transient period while
requests are being sent and responses collected, the L2’s data block remains held as a
lock.

The main perk of the exclusion protocol, and why the authors suspect the Piranha used it,
is its utilization of space on chip. Very little data is replicated, allowing a larger quantity
of unique data to be present compared to the two alternative protocols presented in this
study. In the scenario when a processing node is accessing data in another processing
node’s L1, 2 hops must be made to arrive at the data (L1a L2 L1b), versus
inclusion’s 1 hop (L1a L2). Though this is more expensive for the Exclusion protocol
in this scenario, having the extra data on-chip saves at other times when the exclusion
protocol may perform 2 hops to obtain the data while the Inclusion must go off-chip for
data expelled from the L2 for capacity reasons.

Enright, Vantrease Page 4 of 10

The exclusion protocol, while very attractive for space utilization reasons, does have a
handful of drawbacks. The position of a block, whether it is in the L1 or the L2, may be
independent of how a single processing node is accessing it. That is, if 2 processing
nodes are sharing a block, and one expels it from their L1 for capacity reasons, the other
one, regardless of how heavily they may be using it, must also expel it, only to, perhaps,
request it back into the L1 immediately after writing it back. In addition to this
theoretical drawback, the implementation of the exclusion protocol is quite complex. The
L2 may direct a request to get data from an L1, but when the request arrives there, that L1
may be in the processing of writing it back. Several solutions to this exist, such as
requiring an L1 who wishes a writeback to put the L2 block in a transient ‘lock’ state
before writing back, or immediately satisfying the data request, and then in some manner
canceling the writeback that will arrive at the L2 (if the writeback were permitted to take
place, and L1 and L2 could simultaneously hold the data).

Experiments

The experiments were designed to determine at what configuration each coherency
protocol was preferable. For all of experiments, oltp ran for 50 transactions and jbb ran
for 5,000 transactions. We varied the size of the L1 caches to change the ratio of the total
L1 cache size to the total L2 cache size. All data is presented for a single chip, 4
processor CMP system. Given more time, it would be interesting to also vary the number
of processors in the configuration but for this study our protocol implementation limited
the number of processors ran and how long they ran. The goal was to find the design
point at which having an inclusive protocol might hurt performance or where the
performance of a non-inclusive protocol is significantly improved over the base inclusion
case such that the complexity is warranted. Even for relatively small L1 caches, when
there is a large number of cores that aggregate, L1 size can add up. In a 4-processor
configuration, a 2 MB L2 cache was simulated. This cache size allowed use of
reasonable L1 cache sizes that amounted to a significant percentage of the L2 cache size.

The second experiment ran was designed to approximate the performance of an exclusive
protocol. A set of experiments was run that added the total aggregate L1 cache size to the
L2 cache size to determine if the extra capacity given to the system by an exclusion
policy would result in any improvement in the cache performance for a 4-processor and
8-processor configuration. The baseline simulation with 4 processors had 2 MB of L2
cache and was 4-way set associative. The pseudo-exclusion experiment added 512KB of
cache to the second level. The 8 processor configuration was run with 4 and 5 MB of L2
cache.

Results

The first graph shows the misses per thousand instructions for the inclusive and non-
inclusive protocol run for oltp and jbb. Each cluster of bars represents an increase in L1
cache size. Our L1 cache sizes range from 8KB to 256KB. Although 256KB is large for

Enright, Vantrease Page 5 of 10

a L1 cache the intention was to show the extreme data point where the aggregate L1
cache size was equal to the L2 cache size. There is a jump in miss rate for the inclusive
protocol when the L1 to L2 ratio goes from 25 to 50 % for both benchmarks. These data
points could be valid design points or just artifacts of the simulation. These simulations
are non-deterministic and at the time of the presentation, time permitted a limited run of
data, thus one cannot be completely convinced that this is reliable data. Subsequently
simulations were rerun for one of the data points in questions, specifically the
configuration when the L1 cache size is 50% of the L2 cache size for oltp. Here is a
graph presenting the miss rates since adding the extra capacity should improve those;
however the trend for the ruby cycles for each data point is similar to the trend presented
in the miss rate graphs.

One thing to note about the non-inclusive data points is that the miss rate presented only
accounts for misses that need to go off chip to memory. Since the latency of these misses
is the same as those misses presented in the inclusive case we felt that it was a fair
comparison. The data does not account for local requests that miss in the L2 but can be
satisfied by another on-chip L1. From the runs done, one can see from the inclusion
protocol data that after the L1 cache size reaches 25% of the L2 cache size, the miss rate

0

2

4

6

8

10

12

14

16

8 KB 3.13% 16 KB 6.25% 32 KB 12.50% 64 KB 25% 128 KB 50% 256 KB 100%

L1 Cache Size

M
is

se
s/

Th
ou

sa
nd

 In
st

ru
ct

io
n

OLTP Inclusion

OLTP Non-Inclusion

JBB Inclusion

JBB Non-Inclusion

Figure 1: Misses per Thousand Instruction for Inclusion and Non-
Inclusion protocols

Enright, Vantrease Page 6 of 10

starts to increase. We believe that at this point, and possibly sooner is when a non-
inclusion protocol would be a better design choice. Also worth noting is that at all points,
the off-chip miss rate of the non-inclusive protocol is better than that of the inclusion
protocol so the question of implementing a non-inclusive protocol seems to be more one
of complexity than performance. Is the benefit worth the additional design time and
complexity? Figure 2 presents the same data as Figure 1 but the top part of the stacked
bar has been added. This stacked bar represents the L1 misses that are satisfied locally
by another L1. In some cases the total misses in the non-inclusion case are higher than in
the inclusive case but this is believed to just be an artifact of simulation and more runs
would produce data where the total misses in the inclusive case are closer to that of the
base case. This data is presented because we felt it interesting to note that some of the
stacked bars are significantly lower than the total miss rate in the base case. This
indicates that by not enforcing inclusion, many misses are satisfied by the requesting
processor’s L1. Initially, the belief was this would often be the case. But as the results
show, most of the stacked bars come very close to the base case indicating that a
significant portion of the misses are satisfied by other on-chip processing node’s L1s and
not satisfied by the requesting processor’s L1. This is a very interesting result because it
indicates that keeping data on-chip longer will benefit more cores by giving them lower
latency miss times.

0

2

4

6

8

10

12

14

16

 8 KB 3.13% 16 KB 6.25% 32 KB 12.5% 64 KB 25% 128 KB 50% 256 KB 100%

Locally satisfied
misses
Off-chip misses

Figure 3 presents data from our pseudo-exclusion experiment described above. The
question arises, why does OLTP see so little improvement from the extra capacity when
it sees a more significant improvement from non-inclusion? Intuitively, the numbers
should be more similar. There are two possibilities for this result. First is the previously
mentioned non-deterministic nature of simulation and the data presented could be an
artifact of simulation. The second explanation relates to the associatively of the caches

Figure 2: Miss rates including locally satisfied misses for Non-Inclusion

Enright, Vantrease Page 7 of 10

simulated. For the non-inclusive simulations since each of the L1 caches is 2 way
associative and there are 8 L1 caches, we effectively add 16 ways of associatively to the
on-chip cache storage. However, in order to get an odd cache size from SIMICs, we
simply added on additional way of associativity to the L2 cache increasing its
associativity from 4 to 5. This large discrepancy in the associativity makes it very
difficult to compare these results and reach an accurate conclusion. Unfortunately, from
the way in which ruby creates its caches, another way to generate an odd sized cache was
not discovered, so this experiment best served the approximation without a working
exclusion protocol.

5

6

7

8

9

10

11

OLTP 4P 2MB JBB 4P 2MB OLTP 8P 4MB JBB 8P 4MB

M
is

se
s/

Th
ou

sa
nd

 In
st

ru
ct

io
ns

Inclusion

Pseudo-Exclusion

Discussion

Evaluating inclusion policies for the caches is not as simple as improving miss rates and
performance. There are several other issues that need to be considered when deciding to
switch from a strict inclusion protocol to a non-inclusive protocol or an exclusive
protocol. Two issues that might limit performance of a non-inclusive or exclusive
protocol that were not modeled in our study are the L2 to L1 bandwidth and the ports in
to L1. Sending additional requests from the L2 to the L1 because they cannot be satisfied
by the L2 requires additional bandwidth and may limit the effectiveness of non-inclusion
or exclusion. Also, the number of ports into the L1 could be a point of contention if the
L2 is forwarded a significant number of requests to the L1 while that L1’s processor is
also trying to access the cache. Adding additional ports to the L1 might not be a
desirable solution since adding ports increases the area of the cache and negatively
impacts its access time.

Figure 3: Pseudo Exclusion Experiment Results

Enright, Vantrease Page 8 of 10

As the protocols get further from inclusion and closer to exclusion, complexities arise.
This is due to a combination of factors, the most basic is that the protocols were adapted
from a provided inclusion protocol, and as more changes were made, the fragility of the
protocol increased. In addition, the protocols theoretically become more complex the
further from inclusion they are. Exclusion, for example, requires the L1’s to synchronize
with the L2’s to enforce exclusion at all times. For example, an exclusion
implementation must ensure that a writeback generated by an L1 does not violate
exclusion when it finally arrives at the L2.

The presented study focused on single chip systems. This assumption was made for a
few reasons. One, a clear target system was never specified, and it was assumed that
CMPs have a viable market in single chip configuration. Secondly, and more importantly,
the time was not available to explore all of the issues and code complexity associated
with making our protocols work for multiple chips. Running in multiple chip
configurations would have also made it difficult to study in isolation the on-chip effects
of the protocols. Another interesting question arises when you add multiple chips. Does
extending the life of a block on chip hurt the performance of remote chips? Seeking the
answer to this interesting question has been left for future work.

Two of the three protocols studied use shadow tags. For the configuration studied, the
shadow tags consumed from 1.4% of the total cache area (including tags, line information,
and data) for the smallest L1s modeled to 22% of the total cache area for the largest L1s
modeled. The results for the largest L1s modeled are comparable to Piranha’s cache
configuration and its published estimate of 25% of the cache area consumed by shadow
tags (Barroso et al). Clearly, the larger the L1 and the more L1s present, the larger the
tag cache. However, since the L2 behaves as a victim cache, perhaps there is a limit to its
usability and the space is best spent in large L1s, despite the increased tag cache that goes
along with it.

Limitations

We acknowledge that this study suffers from a few limitations. First, data is presented
for only 2 workloads. While more workloads were attempted, not all of these runs
completed successfully for a variety of reasons. A complete set of data points for both
oltp and jbb were obtained and presented above. Secondly, the runs were shorter than
anticipated due to time constraints of the presentation and final report. Thirdly,
significant amount of time was spent coding in SLICC, which limited the time left to run
simulations. As mentioned above, these runs are non-deterministic which means that a
single data point is not necessarily representative. Due to time constraints most data
points are only single runs and we feel confident that they represent an accurate trend for
the data. However, a few data point were re-run multiple times to determine if the initial
run was accurate or if it was incorrect due to an artifact of the simulation infrastructure.
All of the above lead to mildly inconclusive results; however, we feel that the trends are

Enright, Vantrease Page 9 of 10

accurate and that this project was a great learning experience because it considered many
of the issues involved in maintaining or not maintaining inclusion in the cache hierarchy.

Conclusions

The studies and analysis presented above have brought forth interesting observations and
many avenues for future research. Notably, alternatives to a strict inclusive protocol are
worthwhile avenues of research in CMP systems. A single-chip CMP system, similar to
the one studied here, indicates that extending the life of a data block on chip and
satisfying requests on-chip whenever possible in a seemingly efficient manner is
worthwhile for the workloads evaluated. However, the complexity in the protocol’s
implementation is still a serious drawback and would benefit greatly from further
research into a simple non-inclusive or exclusive protocol.

Although inclusion protocols in a single chip environment were studied, the authors
speculate that the benefits seen in non-inclusion and exclusion will persist in a multi-chip
environment at the cost of additional complexity and drawbacks. Weighing the
performance benefit of such protocols versus the additional development complexity will
be interesting further research.

Enright, Vantrease Page 10 of 10

References

L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,
R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on Single-Chip
Multiprocessing. In Proceedings of the 27th Annual International Symposium on
Computer Architecture (ISCA'00), pages 282--293, June 2000.

J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and B. Sinharoy. POWER4 system
microarchitecture. IBM Journal of Research and Development, 26(1):5--26, January 2001.

