
December 18, 2003. Final report for CS 838.

Design Exploration of an Instruction-Based Shared Markov
Table on CMPs

Lixin Su & Karthik Ramachandran

Department of Electrical and Computer Engineering
University of Wisconsin

Madison, WI 53706

lsu@ece.wisc.edu ramachan@cae.wisc.edu

Abstract
Our project starts from investigating if instruction-based sharing exists on commercial work-
loads such as Apache, Zeus, Jbb, and Oltp running on CMPs. We find that there is a large
amount of instruction-based sharing on CMPs. Constructive interference at the instruction
cache miss level also exists among different CMP cores. We further study if the implementa-
tion of a shared Markov table can help reduce L1 instruction cache misses for each CMP
core. We find that a reasonably small shared Markov table, varying from 4K entries to 32K
entries, can help reduce L1 instruction cache misses and can potentially evenly increase each
CMP core’s performance and thus the overall CMP performance.

KEYWORDS: CMPs, commercial workloads, Markov Table, Instruction Sharing

Page 1 of 16

December 18, 2003. Final report for CS 838

Design Exploration of an Instruction-Based Shared Markov
Table on CMPs

Abstract
Our project starts from investigating if instruction-based sharing exists on commercial workloads
such as Apache, Zeus, Jbb, and Oltp running on CMPs. We find that there is a large amount of
instruction-based sharing on CMPs. Constructive interference at the instruction cache miss level
also exists among different CMP cores. We further study if the implementation of a shared Markov
table can help reduce L1 instruction cache misses for each CMP core. We find that a reasonably
small shared Markov table, varying from 4K entries to 32K entries, can help reduce L1 instruction
cache misses and can potentially evenly increase each CMP core’s performance and thus the overall
CMP performance.

1 .0 Introduction

Modern integrated circuit and packaging technologies have led to several competing high-performance

microprocessor architectures, superscalar processors (OoOs) [8,12], very-long-instruction-word processors

(VLIWs) [9,10,11], simultaneous multithreading processors (SMTs) [1,2] and chip multiprocessors (CMPs)

[4,5,6]. Superscalar processors typically use wide fetching, out-of-order issuing and execution, and multiple exe-

cution units to achieve high performance. VLIWs can efficiently utilize dynamic-static interface and take advan-

tage of compiler technologies to increase computing throughput. SMTs dissect applications into hardware

threads and alternate the execution of these threads when some threads experience long stalls. As a newly emerg-

ing microprocessor architecture, CMPs implement multiple processing cores on the same chip and they act like

an onchip mini-multiprocessor. CMPs employ the typical divide-and-conquer engineering approach. Each pro-

cessing core can be independently designed and then replicated during the final chip integration phase. This

approach greatly reduces the design complexity and shortens the overall chip design cycle. In addition, CMPs

can reuse in a new on-chip environment many existing multiprocessor research fruits, esp. the existing multipro-

cessor protocols. The on-chip multiprocessing brings higher communication bandwidth, shorter access latencies,

and better wiring options, leading to better interprocessor interactions than existing multiprocessors that are lim-

ited by offchip technology constraints. Furthermore, CMPs can still be compatible with the other three compet-

ing technologies: superscalars, VLIWs, and SMTs. Each CMP core can be implemented as superscalars, VLIWs,

or SMTs. Other than implementing complex processing cores, CMPs can choose a simple in-order processing

core design and save precious on-chip resources for a better memory system design.

Meanwhile, commercial workloads [15] such as databases and Web applications have surpassed scien-

tific computing workloads to become the largest and fastest-growing market segment for high performance sev-

ers. Such workloads contain multiple processes, provide accesses to multiple users, and run on multiple

processors. Database and Web applications can run similar transactions concurrently, process identical queries

Page 2 of 16

December 18, 2003. Final report for CS 838.

from different users, and schedule executing threads in case of lock contentions. Therefore, commercial work-

loads should have some inherent interactions among concurrent threads and transactions and these interactions

can behave externally on the interactions among different CMP cores’ processing. In addition, most commercial

workloads still stay in a coarse grained level that requires a large computation to communication ratio in order to

better overlap computations with communications. However active research is being conducted to integrate fine

grained parallelism into existing commercial applications [13]. This trend will lead to even closer interactions

among internal threads in commercial workloads and thus the closer interactions between workloads and CMPs.

One fundamental approach towards better understanding the interactions between commercial work-

loads and CMPs is studying if sharing exists among commercial workloads’ computing tasks running on differ-

ent CMP cores. Such sharing might exhibit as a thread-level sharing, an instruction-level sharing, or a data-level

sharing. The thread-level sharing includes both the instruction-level sharing and the data-level sharing but it

shows in a broader scope. The data-level sharing might often accompany with the instruction-level sharing and

can be the outcome of the instruction-level sharing. As a starting point, our projects is focused on the instruction-

level sharing study. We will identify if such a sharing exists for commercial workloads running on CMPs. We

will continue to study if the instruction-level sharing can be utilized to improve overall CMP performance if it

does exist. Sharings can only help improve CMP performance if sharings can be converted to constructive inter-

ferences for tasks running on different cores.

Our study started from counting repeated times of sequences of instructions. We found that short

sequences of instructions repeat frequently across CMP cores. This indicates the existence of instruction-level

sharing. After that, we moved on to instruction cache miss sharing study. We implemented a shared Markov

table to store L1 instruction cache misses from 16 CMP cores. We studied the hit rate and size of such a shared

table. We found that instruction-level sharing exists in L1 instruction cache miss streams from different CMP

cores and a small shared Markov table can help dramatically reduce the number of L1 instruction cache misses

and thus improve CMP performance.

The rest of this paper is organized as follows. Section 2 presents an overview of a CMP. Section 3 pro-

vides an insight to the current class of applications and workloads. Section 4 describes an overview of the project

and the simulation environment. Design and simulation results of our first experiment are presented in Section 5.

In Section 6 we describe our Design and simulation results of the second experiment. Finally, we discuss related

work and conclude.

2 .0 CMPs - An Overview

The main motivation for building a single chip multiprocessor comes from two sources: there are both a

technology push and an application pull. CMOS technologies have given us a large amount of on-chip resources

Page 3 of 16

December 18, 2003. Final report for CS 838

and in the near future there may be one billion transistors on a single chip. How to efficiently utilize these transis-

tors will become an important issue that architects need to address. Aggressive superscalars with wide instruction

issuing and large amounts of speculation support are leading us to a dead-end: the increase of the delay in the

complex issue queue and the necessity of supporting multi-ported register files. The complexity of the bypass

logic also grows quadratically with the number of execution units. VLIWs are being used in Intel’s Itanium pro-

cessors but they require large amounts of support from software, e.g., both operating systems and compilers,

which may require rewriting and recompilation of existing applications. This approach is being proven to be

unpopular by the Itanium family processors. SMTs are putting a lot of pressure on register files and cause chal-

lenge to chip designs. The existing SMTs can only support a maximum of two threads and the two threads can

only commit instructions that don’t affect the other thread, which reduces the ROB design complexity but lower

the performance benefit of SMTs. CMPs, as a newly emerging competing technology, put multiple processing

cores on a single chip to reduce design complexities and explore multithreaded parallelism in applications. CMP

cores can be either homogeneous or heterogeneous. CMP cores can also be implemented as simple in-order cores

or less aggressive OoO cores. It might also be possible for CMP cores to be designed as SMT cores or VLIW

cores if the combinations can be proven to dramatically increase overall system performance.

The primary benefits from integrating modules onto a single chip arise from both the reduction of design

complexities and more efficient communication interfaces. First, CMP cores are much simpler than aggressive

superscalar processors. They can be in-order and won’t hurt performance due to the existence of multiple cores.

CMP cores can be designed once and then replicated if homogeneous cores are used. Second, there are fewer sig-

nals that cross chip boundaries, leading to lower latency communications than existing multiprocessors. Third,

integrations allow for substantially higher communication bandwidth by removing constraints imposed by scarce

external pin resources. Intrachip wiring among processing cores can also lead to better bandwidth for interpro-

cessor communications. Both lower communication latencies and larger communication bandwidth present us

opportunities for sharing different processing cores’ knowledge.

CMPs can also integrate a large portion of memory hierarchy to the chip, e.g., L1 caches and L2 caches.

Integrations of multiple processing cores and memory hierarchy can help achieve high performance. Other than

that, the interface between CMP cores and memory hierarchy stay very similar to the interface on existing multi-

processor systems except that communication latencies are much shorter and communication bandwidth is sig-

nificantly larger. This leads to both the opportunities of reusing multiprocessing coherence protocols and the

challenge of improving existing protocols in the presence of better communication interfaces.

3 .0 Commercial Workloads

From the application perspective, microarchitectures have to be designed to suit the inherent characteris-

Page 4 of 16

December 18, 2003. Final report for CS 838.

tics of applications to maximize microarchitectures’ performance. For CMPs designed to run on servers,

most applications will be commercial workloads. These workloads are different from scientific computing

workloads. First, commercial workloads are multithreaded, multitiered, and multiuser-oriented. Existing

applications are designed with a coarse grained parallelism. The computation to communication ratio is

generally high in order to overcome the synchronization cost. Future applications will shift toward a finer

grained parallelism. A fine grained parallelism can better utilize intrachip communication interfaces pre-

sented by CMPs. Second, many commercial workloads are database and Web applications. Concurrent

transactions and queries can be launched by users. These transactions and queries can often use similar

code and process similar data tables in databases. This leads to the possibility of instruction sharing among

different processor cores. Third, most computing in commercial workloads are integer operations. Float-

ing-point application performance is less important for commercial workloads.

4 .0 Project Overview

Our project can be divided into two phases. First, we need to prove if instruction sharing exists on

commercial applications running on CMPs. In this phase, we want to prove the existence of instruction

sharing in two levels -- instruction streams executed by different CMP cores and instruction cache miss

streams experienced by different cores. The instruction stream study is supposed to be simple and fast,

which gives us a glimpse at the possibility of the existence of the instruction sharing. The instruction cache

miss study is conducted in detail and is combined with the design exploration of shared Markov table

under L1 instruction caches. The second phase is a thorough design exploration of our proposed shared

Markov table. Here we mainly focus on the prospective that a shared Markov table can reduce the number

of instruction cache misses for each CMP core and how the table should be configured, e.g., the size and

teh associativity of the table. We also want to investigate the interaction of a shared Markov table with

other on-chip hardware structures, e.g., shared L2 caches and sequential prefetchers, that can help reduce

the number of instruction cache misses.

A shared Markov table under L1 instruction caches can help reduce instruction cache misses and

improve performance only if it meets the following requirements. First, the hit rate of lookups by each

CMP core has to be high. This requirement equals to that constructive interference from multiple CMP

cores has to exist. Second, the size of the Markov table should be reasonably small so that access latencies

are lower compared with access latencies to L2 caches.

We use the Simics full system simulator for our study. Simics with Multifacet extensions is an

execution driven simulator and it simulates a SPARC based CMP. We focus on four commercial work-

loads: SPECJbb, Apache, Zeus and Oltp. SPECJbb is a java version integrated database application.

Page 5 of 16

December 18, 2003. Final report for CS 838

Apache is static application server workload. Zeus is a dynamic application workload. Oltp is tpc-c like

database transaction application.

5 .0 Experiment I

This is our first experiment and it largely decides whether we can proceed in the direction we

planned. Therefore, our first experiment needs to be simple and give us a general idea whether it is possible

for the instruction sharing to exist on CMPs. If it doesn’t, our hypothesis is wrong and we probably need to

change our project. If it does exist, we will move further to the instruction cache miss sharing study and we

will investigate the feasibility of implementing an instruction-based shared structure such as Markov tables

for CMPs.

5.1 Experiment Setup

We designed a very simple experiment as our experiment I. With this experiment, we simply count

the repeated times of a sequence of n consecutive instruction across different CMP cores. If the repeated

times are very large, it might be very promising that instruction sharing exists and we can continue with

our planned study.

Table I is an example showing how we count the repeated times of a sequence of n instructions.

Say a particular sequence {A, B} occurs N times on P1 through P4 on a 4 core CMP system, then we say

that the individual repeated counts on each processor is N-1 and the total count of the repeated sequence on

the entire CMP is 4N.

5.2 Simulator Configuration

For our experiment we use Simics full system simulator with Opal and Ruby extensions. For sim-

plicity we only look at CMPs with 16 on-chip cores. In addition, we only have 16p checkpoints for our

workloads: Zeus, Jbb, Apache and Oltp.

5.3 Results

As previously mentioned, the main goals of our first experiment were to investigate into the

instruction-sharing pattern on our CMP and give us a possibility if instruction sharing exists on commer-

cial workloads running on CMPs. Figure 1 gives us an insight to the amount of repeated sequences occur-

ring on our system. We observe that the number of times a sequence pattern from two to five instructions

repeat on the entire system is nearly 75%. This was found across all the four benchmarks and for each

Processor P1 P2 P3 P4

Sequence of 2 I’s {A,B}... N times {A,B}... N times {A,B}... N times {A,B}... N times

Count on each P N-1 N-1 N-1 N-1
TABLE 1. An example of how we count the repeated times of a sequence of n instructions. For this case our counter is

4N, which means that a sequence of 2 instructions repeats 4N times across 4 processors.

Page 6 of 16

December 18, 2003. Final report for CS 838.

transaction. As per our design, we clear out statistics after each transaction that consists of 20000 instruc-

tions, hence we find the count to have an almost horizontal slope for each workload. Initially this data

seemed to be weird to us due to the high repetition count and also due to the not so big difference in the

number of times a sequence pattern of 5 instructions occurring from a sequence pattern of 2 instructions.

But on further analysis we thought that spin loops could be the cause for such high counts. We added some

more logic to count the percentage of spin loops occurring and in commensurate with our hypothesis it was

interesting that spin loops occurred 50% of the time for a non warm-up cache and around 30% of the time

with a warmed-up cache. The wisdom of pushing for a shared I-Cache was still naïve. Hence we moved on

to our design of second experiment that focuses on the I-Cache miss-sharing pattern across our CMP sys-

tem.

6 .0 Experiment II

Our experiment I results led us further towards the belief of our hypothesis that the instruction

sharing exists across different processor cores. However, experiment I itself is yet enough to prove that our

hypothesis is a fact and designing a shared structure to increase computing performance on CMPs can be a

feasibility. Our experiment II is a natural follow-up experiment from the first one and is a major part in our

project. It is designed and set up to prove that the instruction sharing does exist across CMP cores. The

experiment focuses on the first level instruction cache miss study and tries to answer if the instruction shar-

ing exists within CMPs. The experiment also tries to answer questions if a shared Markov table can help

significantly reduce the number of the first level instruction cache misses for almost all CMP cores and

potentially increase CMP’s overall performance.

6.1 Experiment Setup

In the experiment, we implemented a 16K-entry fully associative shared Markov table in Opal. See

figure 2 for details. All the 16K entries are maintained in an LRU list. The LRU head entry represents an

entry that is most recently visited and the LRU tail entry represents an entry that is least recently visited.

Each entry has an LRU distance from the LRU head, which is exactly how many entries this entry is away

from the LRU head entry. The LRU tail entry is replaced when the table is full and a new entry is to be

inserted. Each entry can hold two consecutive instruction cache misses from the same processor core. An

atomic lookup in the Markov table is performed when a processor sees two consecutive misses from its

own instruction cache. The hit or miss counter is respectively incremented by one depending on whether

the lookup turns out to be a hit or miss. A new entry will be inserted to the LRU tail if the lookup is a miss.

The new entry holds the misses the lookup processor just experienced. The old LRU tail entry has to be

replaced if the table is full. Similarly, the LRU distance of the hit entry is recorded in a histogram class if

Page 7 of 16

December 18, 2003. Final report for CS 838

Figure 1 (a) Repeated times of sequences of 2, 3, 4, 5 instruction across 16 CMP cores for Zeus.

Z e us_8

0

5000

10000

15000

20000

25000

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211

T ra n s a c tio n s

C
o
u
n
t

T r a n s a c tio n s
s e q 2
s e q 3
S e q 4
s e q 5

Jb b _ 1 0 0

0

2 0 0 0

4 0 0 0
6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0
1 6 0 0 0

1 8 0 0 0

2 0 0 0 0

1 2 1 4 1 6 1 8 1 1 0 1 1 2 1 1 4 1 1 6 1 1 8 1 2 0 1 2 2 1 2 4 1 2 6 1 2 8 1

T r a n s a c tio n s

C
o
u
n
t

T r a n s a c tio n s
s e q 2
s e q 3
s e q 4
s e q 5

Page 8 of 16

December 18, 2003. Final report for CS 838.

the lookup is a hit. The hit entry is automatically moved to the head of the LRU list

6.2 Simulator Configuration

Our simulation is based on Simics full system simulator from the Multifacet group. It uses both

Opal and Ruby. Opal simulates the processor core and Ruby simulates the memory system. Our code is

written in Opal. Table 2 listed below shows some important simulation parameters. Our instruction cache

configuration is aggressive compared with the current L1 instruction cache configuration for uniproces-

sors. CMPs integrate multiple processor cores on the same chip and each core has an L1 instruction cache

and an L1 data cache. The real estate for each core might be even precious than for uniprocessors. There-

fore, we predict that first level instruction cache tend to remain direct mapped 32KB caches in the near

future. However, the simulator only allows us to choose one single configuration for both instruction

Figure 1 (b) Repeated times of sequences of 2, 3, 4, 5 instructions across 16 CMP cores for Jbb.

Figure 1 (c) Repeated times of sequences of 2, 3, 4, 5 instructions across 16 CMP cores for Apache.

Figure 1 (d) Repeated times of sequences of 2, 3, 4, 5 instructions across 16 CMP cores for Oltp.

Apache_8

0

5000

10000

15000

20000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Transactions

C
o
u
n
t

Tr ansactions

seq2

seq3

seq4

seq5

Oltp_2

0

5000

10000

15000

20000

25000

1 30 59 88 117 146 175 204 233 262 291 320 349 378 407 436

Transactions

C
o
u
n
t

Transactions
Seq2
seq3
seq4
seq5

Page 9 of 16

December 18, 2003. Final report for CS 838

caches and data caches. We choose 2-way associative 64KB cache configuration to leverage the benefit of

a bigger L1 data cache.

6.3 Hit Ratio in the Shared Markov Table

We first investigate the hit rate of all the lookups in the shared Markov table in order to find if the

instruction sharing exists across CMP cores and if constructive interference exists across different CMP

cores’ instruction cache miss streams. We define the hit rate as the number of hits in the Markov table

divided by the number of lookups performed by all CMP cores. We also run the same experiment for the

uniprocessor where only one CMP core is connected to a Markov table and only this processor can look up

in and update the Markov table. We were unable to examine the hit rate for a “pure” uniprocessor since we

were only given 16p checkpoints. But we think the instruction cache miss stream from one CMP core out

of sixteen homogeneous cores should behave similarly to the instruction cache miss stream of a uniproces-

Figure 2 (a) Left figure. The hardware design block diagram. A small shared Markov is shared by all the processor cores within

CMPs. (b) Right Figure. The internal structure of a shared Markov table. The red fonts represent cache misses. All the entries

within the Markov table are maintained in an LRU list. There are two counters: hit counter and miss counter. A processor per-

forms an atomic lookup when it sees two consecutive instruction cache misses. We only show one processor in the figure.

CMP cores 16

I cache (size/associativity/block size) 64KB/2/64B

D cache (size/associativity/block size) 64KB/2/64B

Shared L2 cache (size/associativity/block size/banks) 1MB/4/64B/16

Protocol MSI_dir_L1_MOSI_dir_L2_CMP
TABLE 2. Experiment II simulator parameters.

P

I$

P

I$

Markov Table

L2 $
DDBB

DDAA

CCAA

BBAA

DDBB

DDAA

CCAA

BBAA LRU head

LRU Tail

33Miss Miss CntCnt

22Hit Hit CntCnt

33Miss Miss CntCnt

22Hit Hit CntCnt

P CCAA CCAA

Page 10 of 16

December 18, 2003. Final report for CS 838.

Figure 3 (a). Hit rate in the shared Markov table across 16 CMP cores for Zeus 100 transactions with cache warm-up.

Z e u s 1 0 0 tr a n s a c tio n s w ith c a c h e w a r m u p

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

P r o c e s s o r s

of

 lo
ok

up
s

in
 s

ha
re

d
M

ar
ko

v
Ta

bl
e

o f m i s s e s # o f h i t s

JBB 100 transactions w ith cache w armup

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processors

of

 lo
ok

up
s

in
 s

ha
re

d
M

ar
ko

v
ta

bl
e # of misses # of hits

Page 11 of 16

December 18, 2003. Final report for CS 838

Figure 3 (b). Hit rate in the shared Markov table across 16 CMP cores for Jbb 100 transactions with cache warm-up.

Figure 3 (c). Hit rate in the shared Markov table across 16 CMP cores for Apache 100 transactions with cache warm-up.

Figure 3 (d). Hit rate in the shared Markov table across 16 CMP cores for Oltp 40 transactions with cache warm-up

A pac he 100 trans ac tion w ith c ac he w arm-up

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Proc es s o rs

of

 lo
ok

up
s

in
 s

ha
re

d
M

ar
ko

v
ta

bl
e

o f mis s es # o f h its

OLTP 40 transactions w ith cache w armup

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processors

of

 lo
ok

up
s

in
 s

ha
re

d
M

ar
ko

v
ta

bl
e

of misses # of hits

Page 12 of 16

December 18, 2003. Final report for CS 838.

sor’s.

We run our experiments over four benchmarks: Zeus, Jbb, Apache and Oltp. Due to the time con-

straint, we only run Zeus for 100 transactions, Jbb for 100 transactions, Apache for 100 transactions, and

Oltp for 40 transactions. We notice that the load balance is fairly even for the four benchmarks except that

one or two processors experience far fewer instruction cache misses than other peer processors. Among the

four benchmarks, Jbb shows the worst load balance across different processors since Jbb has the least num-

ber of instruction cache miss rate. We believe that all the sixteen processors will show similar number of

instruction cache misses if we run enough number of transactions for all four benchmarks.

The four benchmarks exhibits very similar behavior in terms of the average hit rate and the core-

specific hit rate. The average hit rate of all CMP cores for Zeus, Jbb, Apache and Oltp are 73.3%, 73,5%,

74.4% and 71.1%. Above 70% is a pretty good hit rate given the fact we only run 40 transactions for Oltp

and 100 transactions for Zeus, Jbb, and Apache. We estimate that the hit rate may slightly improve if we

run each benchmark for a few hundred of transactions. For each CMP core, its private hit rate always var-

ies between 60% and 80% although some CMP core may experience more instruction cache misses than

Figure 4 Comparison of CMP and uP hit rates in the Markov table.

CMP vs. uP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Zeus Jbb Apache Oltp

H
it

R
at

e
in

 M
ar

ko
v

Ta
bl

e

CMP

uP

Page 13 of 16

December 18, 2003. Final report for CS 838

their counterparts. There’s only one exception here, which is processor 10 of Apache. We think this is

probably the outcome of deviation. The hit rate of this processor should exceed 60% if we can run Oltp for

several hundred transactions.

We further study the Markov table hit rate for uniprocessors and compare the CMP hit rate with

uniprocessor hit rate to prove that the instruction sharing, esp. constructive interference exists in the

instruction cache miss level on CMPs. We run 100 transactions for Zeus, Jbb, and Apache for uniproces-

sors as we did for CMPs. We run 40 transactions for Oltp for uniprocessors as we did for CMPs. See figure

4 for details. As we can see, the hit rates for Zeus, Jbb, and Apache dramatically increase from the unipro-

cessor case to the CMP case, which are typically more than 40%. The hit rate for Oltp increases by about

6% from uniprocessors to CMPs. There is still gain in terms of hit rate in the Markov table for Oltp even

though the increase is not as dramatic as other benchmarks. Since Oltp is a data base transaction applica-

tion, we think the same transaction might appear frequently on the same processor as well as on the other

processors, which can explain why Oltp’s hit rate increase from uniprocessors to CMPs is not as dramatic

as the increases seen by the other three benchmarks. From this comparison, we can see that instruction

sharing does exist in different cores’ instruction cache miss streams and constructive interference helps to

improve the Markov table hit rate from uniprocessors to CMPs.

6.4 Size of the Shared Markov Table

We have shown in section 6.4 that a shared Markov table can help reduce the number of instruc-

tion cache misses across CMP cores. Another problem worth studying is how big this table should be. In

order to find the size of such a shared Markov table, we collect in our experiment the LRU distance of all

the hit entries in the Markov table. The definition of the LRU distance was given before and it represents

the chances that an entry is still in the table when it is looked for by a CMP core. More specifically, the

larger the LRU distance of a hit entry is, the less possible it is that the entry is still in the table when it is

used since this entry is closer to the LRU tail and may have been replaced.

As we can see in figure 5, all the hit entries are within 16K entries away from the LRU head entry

since the table size is only 16K. Other than Jbb, about 60% hit entries are within 4K entries away from the

LRU head entry, which indicates that a 4K-entry shared Markov table can still help reduce the number of

instruction cache misses. A 4k-entry table is a very small table and actually a 16k-entry table isn’t very big.

From the circuit design perspective, a very small table like a 2k-entry table might cause trouble adding 4 or

8 read ports to itself. One thing worth pointing out here is that our 16K-entry table is a fully associative one

which might be a little bit challenging to design. However, an 8K-entry fully associative table with signifi-

cantly shorter access latencies than a big shared L2 cache can still be designed. In another approach, we

Page 14 of 16

December 18, 2003. Final report for CS 838.

can still design a 32K-entry 8-way associative table or even a 64K-entry 8-way associative table.

6.5 Hardware Implementation Issues of a Shared Markov Table

As discussed in the previous section, we need to make decisions about the size and the associativ-

ity of a shared Markov table. We need to consider the area budget, access latency compared with a big

shared L2 cache, and the pressure of many read/write ports added to the table. Another decision we can

make is the number of CMP cores that can share such a table. For example, we can have two shared

Markov tables and each 8 CMP cores instead of all the 16 cores share one single Markov table.

A simple variation of a shared Markov table is a shared history table for a Markov prefetcher. A

CMP core starts prefetching instructions into its instruction cache when it experiences a cache miss and

finds a hit in the shared Markov table. For a Markov history table, there might be several path that match

one single instruction cache miss. Here we need to have a simple counter mechanism to choose from these

several paths, the path that has the largest counter value.

Another hardware optimization for a shared Markov table is the separation of address directory

Figure 5. The number of hits that have LRU distances smaller than 16K, 4K, 2K and 1K.

Size Vs. Content

0

0.2

0.4

0.6

0.8

1

1.2

Zeus Jbb Oltp Apache

Pe
rc

en
ta

ge

16k
4k
2k
1k

Page 15 of 16

December 18, 2003. Final report for CS 838

from data entries in the shared Markov table. A data entry, containing two cache lines, is much bigger than

the sum of two cache block addresses. By the separation of data from addresses, we can afford having mul-

tiple copies of address directories within chip. We can have either one or two CMP cores sharing an

address directory, which avoids crossing the whole chip for lookups and enables fast lookups in the table

by CMP cores.

Another issue we want to study is the impact of sequential prefetchers on a shared Markov table.

This problem can be addressed by examining the number of sequential cache misses for all two consecu-

tive cache miss combination. If the number of sequential cache misses dominates, a sequential prefetcher

might be a good idea instead of implementing a shared Markov table. If the number of sequential cache

misses is small, it is definitely worth implementing a shared Markov table.

7 .0 Related Work

On-chip resource sharing has been extensively utilized for simultaneous-multithreading processors

(SMTs). The original SMT processor[1] proposes to share functional units, first level instruction and data

caches among different threads within one single processor core. Intel’s patented hyperthreading technol-

ogy [2] shares memory hierarchy, a few pipeline stages (register renaming, instruction issuing, execution,

memory, register writeback) between two simultaneous threads. However, researchers have pointed out

that sharing should not be excessively implemented for SMT processors. Matt et. al. [3] identified that

sharing branch predictor history among different threads could hurt the overall performance for SMT pro-

cessors by causing destructive interference.

On-going CMP research has started studying sharing on-chip resources across different CMP

cores. IBM power 4 [4] shares an L2 cache between two on-chip cores. Academic CMP research [5] also

proposes sharing second-level caches among different cores.

Other microarchitecture study, CMP research also started investigating server-side application

characteristics, e.g., OLTP [6], ECPerf [7],

8 .0 Conclusions and Future Work

In conclusion, we have made several contributions to ongoing CMP research in our project. First,

we find that the instruction-based sharing exists for current commercial workloads running on multiple

CMP cores. Constructive interference also exists and can be explored. Second, we propose a small Markov

table underneath L1 instruction caches and shared by all CMP cores. We demonstrate that this small table

can help reduce instruction cache misses and can potentially improve the overall CMP performance. Third,

we have explored the design space of the newly proposed Markov table. We show that the size of this table

can vary from 4K to 32K to efficiently reduce instruction cache misses. We also identify several design

Page 16 of 16

December 18, 2003. Final report for CS 838.

optimizations and investigate the interference of the Markov table with other on-chip hardware structures.

For future work, we need to perform experiments to get the IPC data and see how much perfor-

mance improvement a shared Markov table can bring. We also need to investigate the interference between

a shared Markov table and a sequential prefetcher. We need to find how many consecutive instruction

cache misses are sequential. Third, we need to study the possibility of implementing Markov prefetching

based on the existing instruction-based sharing. Finally, we need to find out if the data-based sharing exists

on CMPs and if the larger thread-level sharing exists on CMPs.

References
[1] Dean Tullsen et. al. Simultaneous Multithreading: Maxmizing On-Chip Parallelism. In proceedings of the 22th Annual In-

ternational Symposium on Computer Architecture (ISCA-22), June, 1995
[2] Deborah Marr et. al. Hyper-Threading Technology Architecture and Microarchitecture. Intel Technology Journal, Issue 01,

Volume 06, Feburary, 2002.
[3] Matt Ramsay et. al. Exploring Efficient SMT Branch Predictor Design. Workshop on Complexity-Effective Design, in con-

junction with ISCA, June, 2003.
[4] J. M. Tendler et. al. POWER4 System Microarchitecture. IBM Systems Journal, Volume 46, NO. 1, 2002.
[5] Kunle Olukotun et. al. The Case for a Single-Chip Multiprocessor. Proceedings of the 7th Intenational Symposium on Ar-

chitectural Support for Parallel Languages and Operating Systems, October 1996.
[6] Luiz Andre Barroso et. al. Impact of Chip-Level Integration on Performance of OLTP Workloads. Proceedings of the 6th

International Symposium on High-Performance Computer Architecture (HPCA-6), January 2000.
[7] Martin Karlsson et. al. Memory System Behavior of Java-Based Middleware. Proceedings of 9th International Symposium

on High Performance Computer Architecture (HPCA-9), February 2003.
[8] Y.N.Patt et. al. HPS, a New Microarchitecture: Rationale and Introduction. Proceedings of 18th Annual Workshop on Mi-

croprogramming, December, 1985.
[9] Joseph Fisher Very Long Instruction Word Architectures and the ELI-512. Proceedings of the International Symposium on

Computer Architecture, 1983
[10] http://www.intel.com/pressroom/kits/events/enterprise_server/itanium_ecosystem.pdf. The Intel Itanium Architecture

Comes of Age
[11] J.DWarnock et. al. The Circuit and Physical Design of the POWER4 Microprocessor. IBM J. of Research and Development,

Vol. 46, No.1, 2002.
[12] G.S.Sohi et. al. Multiscalar Processors. Proceedings of 22th International Symposium on Computer Architecture, 1995.
[13] Dean Tullsen, et. al. Supporting Fine-Grained Synchronization on a Simultaneous Multithreading Processor. Proceedings

of 5th International Symposium on High Performance Computer Architecture, January, 1999.
[14] J.Huh et. al. Exploring the Design Space of Future CMPs. Proceedings of International Conference on Parallel Architectures

and Compilation Technologies (PACT), September, 2001.
[15 Alaa Alameldeen et. al. Simulating a $2M Commercial Server on a $2K PC. IEEE Computer, February, 2003

