
. In
level
 did
ore,

 poli-

are
for-
ring
d
ll
nts.

uilt
MP
d to
, on a
 local
sted

ter to

points,
or-
h a
CS 838: Performance Analysis of
TokenCMP

Mike Marty

NOTE: OLTP results will be available on December 20th, 2003

1.0 Introduction

This paper is meant to be read as an addendum to work submitted to ISCA 2004 [1]
this work, a TokenCMP protocol was developed that was simpler and faster than a 2-
directory protocol. Although we showed significant improvement in performance, we
not provide a detailed explanation nor analysis of the performance results. Furtherm
the 2-level directory protocol compared against did not implement similar coherence
cies.

In this paper, I further analyze the performance of various TokenCMP protocols. They
compared against an improved 2-level directory implementation that has similar per
mance policies to the best-performing TokenCMP variants. To study the effect of filte
and retry timeout latency, eight additional TokenCMP variations are implemented an
compared. The causes for performance differences among TokenCMP variations wi
become apparent and will serve as guidance towards developing further improveme

2.0 TokenCMP Review

2.1 Description

TokenCMP is an adaptation of TokenB [4] designed for moderately sized systems b
from multiple CMP chips. We target, and simulate, a system built from four, 4-way C
nodes each with a shared L2 and private L1 caches. As in TokenB, broadcast is use
reduce the latency of cache-to-cache transfers both internally and externally. That is
L1 miss the request is broadcast to other on-chip caches including the L2 and other
L1s. L2 controllers use filters to determine whether the local miss should be broadca
to other CMP nodes. L2 controllers receive external messages and use the same fil
determine if it should be broadcasted locally to the L1 caches.

TokenCMP extends token counting, used to enforce coherence at the processor end
by distributing tokens to individual caches rather than to a single processing node. F
ward progress is achieved by using the distributed persistent request scheme [2] wit
table of outstanding persistent requests at each cache.
CS 838: Performance Analysis of TokenCMP December 19, 2003 1

going
ble 3

nd
ed

tely

off-
n the

d laten-
 node
iring

ible
 L1
sti-

pleted
n of

 by
s, the
cces-

 the
ver

an all
d-
cor-

will
Three variations of TokenCMP were presented-- TokenCMP0, TokenCMP1, and
TokenCMP2. These protocols differed on the number of transient requests (before
persistent), and the timeout latency for issuing a retry. The details can be found in Ta

2.2 Performance (ISCA 2004 submission)

Results in [1] indicated a substantial performance difference between TokenCMP2 a
TokenCMP1. The protocol differences between these two variations are summariz
below:

• TokenCMP1 makes a single transient request, and then goes persistent immedia
upon a timeout

• TokenCMP1 uses a fixed retry timeout of 250 cycles (roughly the time to satisfy an
chip request). Whereas TokenCMP2 dynamically varies the retry timeout based o
measured latency of previously completed requests

TokenCMP2 computes a retry timeout latency based on the measured and average
cies of previously completed requests. In TokenB, token coherence was done at the
level such that the only requests included in the latency estimate were L2 misses requ
coherence transactions at the global level. In TokenCMP, L1 controllers are respons
for tracking outstanding coherence requests-- that is, token coherence is done at the
level rather than the L2 level. Therefore, L2 hits are included in the running latency e
mate of completed requests. We believe that this causes the running average of com
requests to be driven to low levels. Thus when a miss does occur, a quick successio
requests is emitted from the L1 controllers.

We hypothesize that this “machine gun” effect may improve the performance caused
coherence races. First, if a request fails due to an in-flight message containing token
“trail” of requests may then succeed in “finding” the tokens. Second, once a quick su
sion of requests have been emitted, the transient retry threshold is reached causing
request to go persistent. In cases of contention in which processors are competing o
tokens, getting to the persistent request mechanism sooner is conceiviably better th
competing processors incurring long timeouts before going persistent. Third, the ban
width-reducing filters forward any retried transient requests. If these filters are often in
rect, then this “machine-gun” effect will cause the retry to be correctly broadcasted
sooner.

3.0 Expanded Analysis

This goal of this performance analysis is to further understand the performance of
TokenCMP. First, DirectoryCMP1 will be discussed which will be used alongside
DirectoryCMP0 as comparison points. Then the various TokenCMP implementations
be used to test hypothesis.
CS 838: Performance Analysis of TokenCMP December 19, 2003 2

ar
clu-
nd
on is
is
r is

o
ol

sac-
isfied

stly
. On
ve a
sses

fers.
MP in
ing

s of
loca-

r of
n-
s.
3.1 DirectoryCMP1

DirectoryCMP1 is a different implementation of a 2-level directory protocol with simil
policies to the best performing TokenCMP protocol. In particular, it implements the ex
sive state and migratory sharing for faster read-modify-write sequences for shared a
non-shared blocks. The shared L2 cache is also non-inclusive whereas strict inclusi
maintained with DirectoryCMP0. Anecdotal evidence indicates that DirectoryCMP1
much more complex than DirectoryCMP0 as the number of states in the L2 controlle
nearly doubled. Non-inclusive caches is one reason but other contributors include n
requirements on point-to-point network ordering and chip exclusiveness-- the protoc
knows if all shared copies exist on-chip such that a local GETX does not need to be
ordered at the global directory.

Table 1 gives measured latencies for certain classes of uncontended coherence tran
tions. Note that local cache-to-cache misses include GETS requests that can be sat
by a local L1 sharer.

TokenCMP is expected to outperform 2-level directory protocols by removing the co
indirection through the global directory/memory as shown in the measured latencies
workloads that exhibit a large number of cache-to-cache transfers, I expect to obser
noticeable improvement in runtime. Profiling the occurrence of these transaction cla
will be left for future work. However in a system fixed at 16 processors, as I assume
throughout, increased CMP integration will result in fast on-chip cache-to-cache trans
Therefore, the expected improvement will be less than observed in a 16-processor S
which all cache-to-cache transfers incur similar penalties which are larger due to go
off-chip.

Also note that our simulation infrastructure interleaves memory on the lower order bit
the cache block index. Furthermore, even though Solaris supports NUMA memory al
tion techniques, our simulator does not provide the OS with necessary information
required to do so. The ramifications for our simulation of TokenCMP is that the numbe
misses to global memory is dilated and will result in extra traffic on the global interco
nect. I expect this effect to be minor as the bandwidth is not limited in our simulation

TABLE 1.

TokenCMPx DirectoryCMP1

miss to local memory 161 169

miss to global memory 219 227

local cache-to-cache miss 12 19

global cache-to-cache miss 82 243
CS 838: Performance Analysis of TokenCMP December 19, 2003 3

uld

ssi-

t
tering
ell as
an
uce

ively
 pro-
sive”
r out

filter
n.

ly
3.2 TokenCMP Variations

Table 2 summarizes the variations of TokenCMP that will be examined.

3.3 Updated Simulation Parameters

• L2 capacity was increased from 4 MB to 8 MB per chip. The higher capacity sho
result in more sharing misses and will reflect future silicon trends

• Bandwidth is effectively increased to infinity so that network contention, due to a po
ble simulator bug, doesn’t affect the performance comparisons

3.4 Hypothesis #1: TokenCMP2 overcomes incorrect filtering

TokenCMP uses filters at the L2 cache to drop initial outgoing and incoming transien
requests (persistent and retried requests are not filtered). The primary purpose of fil
outgoing requests is to relieve the bandwidth pressure of the global interconnect as w
the pin I/O-- arguably a more critical resource as it is limited by technology rather th
monetary cost. Filtering incoming requests, from the global interconnect, will also red
the snoop bandwidth required of the L1 caches.

The filter maintains a limited copy of the L1 tags that is non-atomically and speculat
updated such that it may be incorrect. A filter entry consists of a bit for each on-chip
cessor which indicates that a copy exists at that processor. In addition, a “chip exclu
bit is maintained to denote that no other external sharers exist. This bit is used to filte
GETX requests in which all of the sharers are on-chip.

When a local L1 broadcasts its request to all on-chip caches, the L2 first accesses the
to determine if the request should sent off-chip and carries out the appropriate actio
Then, it sets a bit in the filter indicating that the requestor is now a sharerbefore the

request has been satisfied1. The bit is cleared on an L1 writeback. L1 caches also explicit

TABLE 2.

transient
requests

retry
latency

E-state/
migratory notes

TokenCMP0 1 250 no

TokenCMP1 1 250 yes

TokenCMP2 3 dynamic yes

TokenCMP3 3 25 yes

TokenCMP3B 3 25/delay yes persistent request delayed by 100 cyc

TokenCMP4 1 15/250 yes retry depends on L2’s filtering action

TokenCMP5 3 dynamic yes latency estimates do not include L2 hits

TokenCMP6 1 500 yes no filter

TokenCMP6B 1 500 yes

TokenCMPNull 0 n/a yes all requests persistent
CS 838: Performance Analysis of TokenCMP December 19, 2003 4

t

red
uest,
t in a
p.

use
-

e time-
only
s are

rnal
uld
inform the L2 when it has lost all of its tokens for a block due to an external transien
request.

The chip-exclusive bit is set when the L2 observes a local GETX request and is clea
when a external request is observed/forwarded. This action may cause an initial req
made by another on-chip processor, to be incorrectly filtered. However this may resul
request-combining effect where only a single initial request is propagated off the chi

In TokenCMP3 and TokenCMP2, the initial transient request is quickly followed by a
retry that bypasses filtering. To eliminate the possibility that incorrect filtering is the ca
for superior performance of these protocols, TokenCMP6 and TokenCMP6B are com
pared. These variations make a single transient request before going persistent. Th
out is set at 500 cycles to exaggerate the effect of the transient request failing. The
variable in this experiment is that TokenCMP6 disables the filter such that all request
broadcast.

1. This characteristic could be useful for future work as competing requests from exte
processors will then be forwarded by the L2 filter such that “collision detection” co
be performed.
CS 838: Performance Analysis of TokenCMP December 19, 2003 5

ime-
also
 In
 of a
p
for-
pare

the

sub-
As shown in Figure 1, the filters hurt performance by 2-9%. With a more reasonable t
out latency, I expect the performance penalty to be even smaller. However Figure 1
shows that the filters are not effectively reducing traffic on the external interconnect.
Table 3, the external requests received by the L2 controller is shown for a single run
single JBB workload for both TokenCMP6 and TokenCMP6B. The filter is able to dro
91% of external requests which will substantially relieve the L1 snoop bandwidth. Un
tunately, direct statistics are not available for the outgoing filter. Instead, we can com
the number of external requests seen by the L2 controllers for TokenCMP6 and
TokenCMP6B. With outgoing filtering enabled, only a 2.5% reduction in messages on

external interconnect is observed1. The filters are clearly not effective and they will be
further studied.

1.The variability of JBB is low enough that workload pertubations should not have a
stantial effect on the number of messages.

0.0

0.5

1.0

ru
nt

im
e

(n
or

m
al

iz
ed

 c
yc

le
s

pe
r

tr
an

sa
ct

io
n)

Runtime

T
ok

en
C

M
P6

T
ok

en
C

M
P6

B

Apache

T
ok

en
C

M
P6

T
ok

en
C

M
P6

B

SpecJBB

0.0

0.5

1.0

tr
af

fi
c

(n
or

m
al

iz
ed

 b
yt

es
 o

n
ex

te
rn

al
 in

te
rc

on
ne

ct
)

Inter-CMP Traffic

Control

Data

T
ok

en
C

M
P6

T
ok

en
C

M
P6

B

Apache

T
ok

en
C

M
P6

T
ok

en
C

M
P6

B

SpecJBB

TABLE 3. Number of messages observed on external interconnect. A single JBB run is shown
for each protocol

External
Requests

Requests
filtered

TokenCMP6 1267737 1158143

TokenCMP6B 1301154 0

FIGURE 1. Filter Performance Comparison
CS 838: Performance Analysis of TokenCMP December 19, 2003 6

e

ests

 a
or

 of a
ent

oher-
.

cy

 all

nd

n for
coher-

lete
etry

ith
3.5 Hypothesis #2: A quick succession of requests improves performanc

TokenCMP3 is similar to TokenCMP2 except that it puts out a burst of transient requ
at a fixed latency, and then goes persistent on the fourth request.

Figure N shows that Token3 performs similarly to Token2. This does indeed confirm
burst of requests improves performance. However it is still possible that the reason f
improved performance is the reduced time until the request goes persistent.

3.6 Hypothesis #2B: TokenCMP2 and TokenCMP3 perform well
because requests go persistent quickly

TokenCMP3B is the same as TokenCMP3 except for one key difference: the issuing
persistent request is delayed by 100 cycles. Therefore, if the performance improvem
observed with TokenCMP2 and TokenCMP3 is due to the avoidance of very small c
ence races, performance should be similar between TokenCMP3B and TokenCMP3

[RESULTS UNAVAILABLE AT 9AM SUBMISSION DEADLINES]

4.0 Other TokenCMP Variations

4.1 TokenCMP5 and TokenCMPNULL

TokenCMP5 further illustrates the problem with a dynamically determined retry laten
that doesn’t take into account the hierarchy. TokenCMP5 is identical to TokenCMP2
except that when the latency estimate is updated, L2 hits are not included (anything
smaller than 50 cycles is rejected). This causes the protocol to perform the worst of
TokenCMP variants.

TokenCMPNull does not include a performance policy-- all requests are persistent a
broadcast. Although the performance is relatively comparable to variants such as
TokenCMP0 and TokenCMP1, its generated traffic is significantly higher. The reaso
this is that even L2 accesses, which hit, will generate a persistent request because
ence transactions are done at the L1 level rather than the L2.

4.2 TokenCMP4

Ideally the timeout latency should be slightly longer than the time expected to comp
the request. If a race condition occurred on-chip, then it would be advantageous to r
sooner than if the race condition occurred off-chip. In other words, the retry latency
should not be significantly longer than the round-trip time required to communicate w
every relevent cache.
CS 838: Performance Analysis of TokenCMP December 19, 2003 7

C
S

 838: P
erform

ance A
nalysis of TokenC

M
P

D
ecem

ber 19, 2003
8

0.5

1.0

normalized cycles per transaction)

R
untim

e

T

A
pache

T

S
pecJB

B

F
IG

U
R

E
 2 P

erform
ance of TokenC

M
P

 variations com
pared to D

irectoryC
M

P

0.0

runtime (

DirectoryCMP
DirectoryCMP2

TokenCMP0
TokenCMP1
TokenCMP2
TokenCMP3
TokenCMP4
TokenCMP5

TokenCMPNULL

A
pache

DirectoryCMP
DirectoryCMP2

TokenCMP0
TokenCMP1
TokenCMP2
TokenCMP3
TokenCMP4
TokenCMP5

TokenCMPNULL

SpecJB
B

0 1 2 3

traffic (normalized bytes on external interconnect)

Inter-C
M

P
 T

raffic

C
ontrol

D
ata

DirectoryCMP
DirectoryCMP2

TokenCMP0
TokenCMP1
TokenCMP2
TokenCMP3
TokenCMP4
TokenCMP5

okenCMPNULL

DirectoryCMP
DirectoryCMP2

TokenCMP0
TokenCMP1
TokenCMP2
TokenCMP3
TokenCMP4
TokenCMP5

okenCMPNULL

h con-
by

e L1

d. If
, the

gnifi-
me

ken

 be

uest
n [3]
s of
We’ve also seen that the persistent request mechanism is an efficient way to deal wit
tiention. If it is inevitable that a request will go persistent, then it should not be delayed
futile transient attempts.

TokenCMP4 attempts to acheive these goals. On every transient request made by th
cache, the L2 filter sends an explicit reply informing the controller if the request was
broadcasted off-chip or dropped. If sent off-chip, a longer fixed timeout latency is use
the request was filtered, the L1 controller times out very quickly. On the first timeout
persistent request mechanism is immediately invoked.

As shown in Figure 2, the performance of TokenCMP4 almost approaches that of
TokenCMP2 and TokenCMP3 yet is uses far less traffic.

Table 4 shows that the first transient request succeeds 98.3% of the time which is si
cantly better than the other TokenCMP variations. This proves that the timeout sche
chosen provides ample time for the transient request to be fulfilled when possible.

5.0 Conclusions and Future Work

This analysis has shown the importance of the retry timeout latency in hierarhical To
Coherence protocols. Taking into account of the hierarchical cache and network has
proved to be an effective means to choosing a timeout latency that allows transient
requests to be fulfilled yet doesn’t waste time by waiting. However work still needs to
done in order to approach the performance of TokenCMP2 and TokenCMP3.

Furthermore, with the constraints on off-chip bandwidth and the ineffectiveness of req
filtering, it is clear that other mechanisms must be explored. Destination-set predictio
may be the key to acheiving these goals and will be explored for future implementation
TokenCMP.

TABLE 4.

transient
requests 1 issue 2 issues 3 issues 4 issues

TokenCMP0 1 86% 14.3% ~ 0% ~ 0%

TokenCMP1 1 86% 14% ~ 0% ~ 0%

TokenCMP2 3 87% 1.4% 2.8% 9%

TokenCMP3 3 86% 0.1% 2% 11%

TokenCMP4 1 98.3% 1.7% ~ 0% ~ 0%
CS 838: Performance Analysis of TokenCMP December 19, 2003 9

ion

ct-
6.0 References

[1] M. R. Marty, M.D. Hill, M. M. K. Martin, D.A. Wood.Implementing Faster and Simpler Multiple-CMP
Systems using Token Coherence. Internal Document, University of Wisconsin, 2003.

[2] M. M. K. Martin. Token Coherence. PhD thesis, University of Wisconsin, 2003.
[3] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood. Using Destination-Set Predict

to Improve the Latency/Bandwidth Tradeoff in Shared Memory Multiprocessors. InProceedings of the
30th Annual International Symposium on Computer Architecture, pages 206–217, June 2003.

[4] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling Performance and Corre
ness. InProceedings of the 30th Annual International Symposium on Computer Architecture, pages 182–
193, June 2003.
CS 838: Performance Analysis of TokenCMP December 19, 2003 10

	1.0 Introduction
	2.0 TokenCMP Review
	2.1 Description
	2.2 Performance (ISCA 2004 submission)

	3.0 Expanded Analysis
	3.1 DirectoryCMP1
	3.2 TokenCMP Variations
	3.3 Updated Simulation Parameters
	3.4 Hypothesis #1: TokenCMP2 overcomes incorrect filtering
	3.5 Hypothesis #2: A quick succession of requests improves performance
	3.6 Hypothesis #2B: TokenCMP2 and TokenCMP3 perform well because requests go persistent quickly

	4.0 Other TokenCMP Variations
	4.1 TokenCMP5 and TokenCMPNULL
	4.2 TokenCMP4

	5.0 Conclusions and Future Work
	6.0 References

