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1. Introduction

Over the past two decades, advances in semiconductor process technology and

microarchitecture have led to significant reduction in processor clock periods.

Meanwhile, advances in memory technology have led to ever increasing memory
densities, but relatively minor reductions in memory access time. Consequently, memory

latencies measured in processor clock cycles are continually increasing and are now on
the order of hundreds of clock cycles in duration.

Cache memories help bridge the processor-memory latency gap, but, of course,

caches are not always effective.  Cache misses to main memory still occur, and when
they do, the penalty is very high.  Probably the most basic technique for enhancing cache

performance is to incorporate prefetching.  As the processor-memory latency gap

continues to increase, there is a need for continued development and refinement of
prefetch methods. Most existing prefetching research has focuses on uniprocessor

prefetching.  In this paper, we investigate cache prefetching, aimed specifically at
prefetching in a Chip Multiprocessor (CMP).

Prefetching in a CMP system has very different constraints than uniprocessor

prefetching.  In a CMP, pin bandwidth and the number of transaction buffer entries
(TBEs, the maximum number of outstanding memory requests) are much more

important.  Multiple processors are competing for off-chip bandwidth and TBEs,
reducing the systems tolerance to inaccurate prefetches, where prefetch accuracy is the

percent of prefetches that are accessed by demand fetches before they are evicted from

the cache.  Inaccurate prefetches waste system resources, increase bus contention, and
can degrade overall system performance.  Furthermore, in a directory-based system with

multiple CMPs, memory latency is extremely important.  Often these systems store the
directory in memory, which may require a memory access to retrieve, which effectively



doubles the latency of the request (assuming memory access times is much larger than the

bus transaction time [5]).
The CMP prefetching method we study is based on “stride stream buffer prefetching

concentration zones” (CZones) [14].  This method, as originally proposed, divides
memory into fixed size zones and looks for stride patterns in sequences of cache misses

directed toward the individual zones.  When it finds a stride pattern, it launches prefetch

requests. This method has the desirable property of not needing the program counter
values of the load instructions that cause misses, which may not be readily available at

lower levels of the memory hierarchy.
Throughout the rest of this paper we support using CZone prefetching in a CMP

system.  In section 2, we describe related prefetching research.  In section 3, we describe

the implementation details of the CZone prefetching method in a CMP system.  In section
4, we illustrate the advantages of CZone prefetching in a CMP.   Lastly in section 5, we

conclude and describe unfinished and future work.

To simplify the discussion, we assume a two level cache hierarchy throughout the
paper. Of course, the proposed prefetch method can also be applied at lower cache levels

if they are implemented. Hence, we when we refer to the “L2 cache”, we are referring to
the lowest level of the cache hierarchy, whatever it happens to be.

2. Related Work

2.1. Stride Prefetching

Stride prefetching techniques detect sequences of addresses that differ by a constant

value, and launch prefetch requests that continue the stride pattern [4,9,11,16,18].  The

simplest methods prefetch only unit strides, i.e. where addresses are one word apart.
Some early methods indiscriminately prefetch sequential lines, e.g. sequential prefetching

[16], while other methods wait for a sequential access stream to be detected before
prefetching [18].

More advanced stride prefetching methods can prefetch non-unit strides by storing

stride related information in a history table [4,11,14,].  A key (typically the program
counter) indexes into the table. Each table entry 1) holds the most recent stride (the



difference between the two most recent preceding addresses) 2) the most recent address

(to allow computation of the next stride), and 3) other state information that determines
conditions under which a prefetch should be triggered.  When the current address is a and

a prefetch is triggered, addresses a+s, a+2s, . . ., a+ds are prefetched – where s is the
detected stride and d is the prefetch degree; more aggressive prefetch implementations

will use a higher value for d.  Arbitrary Stride Prefetching [4] was one of the first

schemes for stride prefetching.  Arbitrary Stride Prefetching uses the program counter as
a table index and detects load addresses with any constant stride.

Stride Stream Buffer CZone Prefetching [14] is a stride prefetching methods that
does not use program counter values for table indexing. CZone prefetching was proposed

for use in off-chip L2 caches attached to microprocessors where the program counter is

not externally available.  Instead of using the program counter, CZone prefetching
partitions the memory address space into fixed-size CZones.  Two memory references are

in the same CZone if their high-order n-bits, the CZone tag, are the same.  The value of n

is an implementation-specific parameter. CZone prefetching uses the CZone tag to access
a filter table for detecting constant strides among addresses within each CZone.  Figure 1.

Figure 1: CZone Filter Table

2.2. Correlation Prefetching

Correlation Prefetching methods look for address sequence patterns (beyond simple

strides) in order to predict future cache behavior.  Most proposed correlation prefetching



methods do not use load instruction program counter values to localize address streams.

Markov Prefetching [8] correlates global miss addresses.  Distance Prefetching [10] was
originally proposed to prefetch TLB entries, but was adapted in [13] to prefetch cache

lines.  The adaptation correlates deltas (differences in consecutive addresses) in the
global miss address stream. Tag Correlation Prefetching [7] is a two-level correlation

prefetching method that also uses the global miss address stream.  The conventional

cache index accesses a first level tag history table (THT).  The THT contains the last n
tags with the same cache index.  These tags are combined to access a second level Pattern

History Table (PHT).  The PHT holds the next predicted tag, which is combined with the
cache index to generate a prefetch.

3. CMP Prefetching Implementation Details

For the purposes of the this paper, we focus on stride prefetching methods, but feel
that correlation prefetching in a CMP may be a good way to prefetch the hard to predict

abstract access patterns (we leave this topic for future research).  In general, stride
prefetching methods outperform correlation prefetching methods on most workloads and

require a small amount history (i.e. 4 KB) when compared with correlation prefetching

methods; correlation methods have been proposed with multi-megabyte history tables.
However, correlation prefetching methods have the advantage of only using the miss

address stream (i.e. does not require program counter values), allowing correlation
prefetching methods to be implemented anywhere in the chip’s cache hierarchy.

Prefetching the lowest miss address stream in the cache hierarchy (in our case the

L2) has many advantages, particularly in a CMP system.   First, in a CMP, the L2 cache
is often shared by all processors on the chip.  Consequently, prefetching the L2 miss

address stream can share prefetch history among the processors, resulting in larger
history tables.  Second, prefetching L2 miss addresses reduces contention on the cache

ports, which is becoming increasingly important as the number of processors per chip

grows.  Before a prefetch is sent to the memory subsystem, it must access the L2
directory.  Since the L2 miss address stream has the fewest memory references it will

generate less prefetches and access the cache ports less often.  Last, prefetching into the



L1 is relatively insignificant, since modern out-of-order processors can tolerate most L1

data cache misses with relatively little performance degradation.
Of the existing stride prefetching methods, we chose to study CZone prefetching.

CZone prefetching has the performance of stride prefetching and is the only stride
prefetching method uses just the miss address stream.  Instead of prefetching into stream

buffers, our implementation of CZone Prefetching, like other recent uniprocessor prefetch

research [refs], prefetches into the lowest level cache (in our case the L2, see Figure 2).
To keep prefetched (but not yet accessed) lines from modifying the “natural” L2 demand

miss address stream, we added a new shared prefetched (SP) state (and an intermediate
shared prefetched state).  When a cache access hits a line in the shared prefetched state,

the access’s memory address is sent to update the prefetch structures as if it were an L2

cache miss.

Figure 2: Prefetching Implementation

Prefetching in a CMP is more difficult than in a uniprocessor system.  In addition to
limited bandwidth and increased latency (as described earlier), cache coherency protocols

play an important role in CMP prefetching.  In this respect, our prefetching



implementation is conservative.  Our prefetching implementation prefetches L1 GET

Shared (GETS) requests (loads or instruction fetches) that miss the L2 cache and ignores
GET Exclusive (GETX) requests.  Preliminary results showed that prefetching GETX

requests was too difficult to do effectively (at least with the amount of time we had), and
usually resulted in high link utilization, and reduced overall performance.

Another problem that our implementation addresses is clustered cache misses, a

phenomena widely known and well studied [7,12].  When prefetching the miss address
stream, clustered cache misses result in clustered prefetches.  These clusters of memory

requests clog memory system resources, causing all processors on the chip to stall until
there are available transaction buffer entries (TBEs).  Moreover, in a CMP, clusters of

cache misses from different processors can overlap, further exacerbating the problem.  To

prevent this scenario, our prefetching implementation tracks the number of outstanding
memory requests via TBEs, and issues off-chip prefetch requests only when more than

half of the TBEs are available.  We found that this approach minimizes the resource

contention between demand fetches and prefetches that have already been issued and are
waiting for data.

In general, the number of TBEs in the L2 Cache will be an important parameter for
future CMP implementations.  With current trends, the number of TBEs will need to

increase drastically.  TBEs will need to simultaneously increase in proportion to the

number of processors per chip and the number of possible outstanding memory requests.
Most likely, the number of processors per will increase with Moore’s law (exponentially),

and the number of outstanding memory request will also increase in the future as memory
latencies (measured in processor cycles) increase and as memory becomes more

pipelined; i.e. RAMBUS is the beginning of this trend.  Unfortunately, having a large

number of TBEs is undesirable.  The address field of the TBE structure must be
implemented as some type of content addressable memory (CAM), and in general, large

CAM structures are hard to design and consume a lot of power.

4. Simulation Methodology

To evaluate CMP prefetching, we use the Multifacet simulation infrastructure to

simulate a multiprocessor server running scientific and commercial workloads. Our target



system is a 16 processor system (4 CMP each with 4 processors), running Solaris v9.

Each processor has its own L1 Data and Instruction caches.  The four processors on a
chip share a L2 cache (see Figure 2).  Each chip has a point to point link with all other

chips in the system, a coherence protocol controller, and a memory controller for its part
of the globally shared memory. The system implements sequential consistency using

directory-based cache coherence.  The systems configuration is shown in Table 1. We

simulate different prefetch degrees to illustrate how the system is affected by an
increased demand for cache ports, TBEs, and network bandwidth.

Table 1: CMP Baseline simulator configuration

Total Number of Processors 16 processors
Processors Per Chip 4 processors/chip
L1 Instruction Cache (Per Processor) 64KB, 2-way set associative, 64 byte lines
L1 Data Cache (Per Processor) 64KB, 2-way set associative, 64 byte lines
L2 Cache (Per Chip) 4MB,  4-way set associative, 64 byte lines
L2 TBEs 64 entries
Directory Latency 200 cycles
Memory Latency 200 cycles

Our benchmarks consist of three commercial workloads and two scientific

workloads.  The commercial workloads consist of 100 transactions of an online
transaction processing workload (OLTP), 20000 transactions of a static web serving

workload (Apache), and 20000 transactions of a Java middleware workload (SPECjbb)
[1], while the scientific workloads consist of a discrete grid simulation of ocean currents

(Ocean) and a n-body interaction simulation (Barnes-Hut).

4.1. Results

In this section we present prefetching performance results.  Based on state transition

statistics collected from simulations we were able to approximate two basic prefetching
metrics:  1) Accuracy is the percent of prefetches that are accessed by demand fetches

before they are evicted from the cache and 2) coverage is the percent of demand fetches

that are prefetched instead.  Figure 3 illustrates the prefetch state transitions and the
formulas used to calculate these metrics.  In this diagram SP is the shared prefetch state,

ISP is an intermediate state for a prefetch that is waiting for its data, and NP is the not
present state.  The actions on the arcs are all local actions, that is they were generated by



events within the chip.  They are GETS (describe earlier), GETX (described earlier),

Replacement (causes the cache line to be evicted), Prefetch (sends a prefetch to the
appropriate directory), and PrefetchDataAck (an acknowledgement that the prefetch data

has returned.)  The notation used in the formulas is <State>Action, e.g. <SP>GETS is a
prefetch hit.  For this work, we only use the GETS to calculate our prefetch metrics since

they are the only ones sent to the prefetcher. Figures 4 and 5 show the results of the

prefetch metric calculations (using the arithmetic mean of the benchmarks).

Figure 3: Transition diagram and formulas for prefetch metrics
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Figure 4: Prefetch Accuracy
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Figure 5: Prefetch Coverage



Our prefetch accuracy results are as expected: the accuracy decreases as the prefetch

degree increases.  The coverage results are also easy to understand. The coverage
increases as prefetch degree increases, but only up to a certain point (i.e. a prefetch

degree of 8).  At a prefetch degree of 8, the TBEs become saturated and a large number
of prefetches are dropped, and the prefetches that are not dropped have very low

accuracy.

Prefetch metrics are useful to illustrate prefetch behavior and trends, but say very
little about the actual performance speedup of prefetching.  In Figure 6, we measure the

speedup (harmonic mean of all benchmarks) vs. prefetch degree.  The prefetching result
of the 16 processor CMP system is compared with a 4 processor (1 processor per chip)

MP system.  Speedups are calculated using their respective non-prefetching (prefetch

degree 0) configuration as a baseline (i.e. 16 processor configuration or 4 processor
configuration).  Besides having only one processor per chip, the MP system has an

identical configuration (See Table 1).
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Figure 6: Prefetch Speedup



The final speedups are relatively good (at least when compared to our preliminary

results).  In fact, the CMP system performs better than the MP system.  Initially, these
results seem counterintuitive, but upon closer examination of simulation results, they are

reasonable.  Other simulation results show that link utilization in the CMP case is more
consistent, that it has a smaller standard deviation.  In contrast, the MP case has very

erratic link utilization, a high standard deviation, and the links are often completely

unused.
We would like to study this in more detail, but for now we assume that in the MP

system, when a cluster of cache misses occurs many of the prefetches are dropped
because the TBEs are half full.  Then, once the memory requests return with data, there is

a long period of time when the network links are completely unused, until another cluster

of cache misses occurs.  In the CMP system, clusters of cache misses occur more often,
thus increasing link utilization, and reducing the standard deviation of the link utilization.

In fact, the number prefetches (per unit work) that are issued to the interconnect network

is more related to the number of TBEs than to the amount off-chip bandwidth.  Overall,
the more clusters of cache misses, the more prefetch requests that are sent to the

interconnect network, and the better performance is.  These results seem to favor CMP
prefetching and our algorithm to drop prefetches based on TBE utilization.

5. Conclusion

In conclusion, we feel that CMP prefetching is very promising, more promising then

uniprocessor prefetching.  However, there are still many things that need to be examined

in more detail, particularly prefetching GETX requests, since communication misses
account for a large percentage of execution time.  We also believe there are good

opportunities from making the prefetching algorithm aware of network topology and the
cache coherency protocol.
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