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1 Introduction

Synchronization is an important aspect of multi-processor programs. Though necessary to communicate
data or control information across different threads of a parallel program, excessive synchronization can se-
rialize execution to the point where little benefit is seen from creating a parallel program.1 Synchronization
in the operating systems can also have a large impact on performance when coordinating shared resources
across different processors such as the scheduling queue.

Much research across many decades has resulted in algorithms and hardware solutions that attempt to un-
derstand the numerous trade-offs in terms of latency, bandwidth, implementation complexity, etc. Nonethe-
less, synchronization remains a significant concern for parallel applications and architectures. Especially
now that the computer industry is at a point where multiple processors can be placed onto a single chip, the
trade-offs in the design of synchronization need to be revisited.

Chip Multiprocessors (CMPs) and their workloads have a number of interesting properties that affect the
costs of synchronization. In the next section, we make a few basic assumptions about these properties, and
form hypotheses about CMP synchronization. We then characterize the amount and cost of synchronization
occurring in a particular CMP design, limiting our preliminary study on mutual exclusion (mutex) locks.
Finally, we propose an on-chip lock-arbiter to dynamically handle spin-locks in a queue-based manner.

1.1 Synchronization in a CMP

To motivate why the synchronization scene changes for a CMP, we make three basic assumptions about a
the properties of a single-chip CMP system and its workloads: fast on-chip data transfers, relatively large
amounts of on-chip bandwidth, and relatively infrequent synchronization. We thus consider the following
hypothesis: Spin-locks are an attractive mutex mechanism for CMPs.

More interesting trade-offs arise when considering synchronization both within and across CMP chips
because of the much slower off-chip communication and limited off-chip bandwidth. We expect to find
for these systems that results agree with previous work [2] indicating that queue-based locks are a much
better alternative. In addition, CMPs may enable other workloads which perform much more frequent
synchronization, and are thus more affected by the cost of that synchronization. We expect that spin-locks
are less appropriate in these situations. Finally, CMPs have a large number of transistors that may find better
use in novel ways other than aggressive cores and bigger caches, possibly aiding synchronization.

2 Related Work

Previous work includes QOSB [5] that introduced the idea of queuing requests for locks in hardware. This
was followed by the MCS proposal [4] that implemented the idea in software. QOLB [2] followed the MCS
work, with extra hardware support and extended coherence protocols. I-QOLB [7] introduced speculation
on what might be the execution of a critical section to guide the cache-coherence protocol.

1Thread is used as a generic term to denote concurrent parts of a program, and not specifically kernel threads and the like.
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Rajwar and Goodman proposed the concept of speculative lock elision to dynamically remove lock in-
duced serialization [6]. This is possible, and beneficial, when critical sections are not executed concurrently,
or when operations performed in a critical section do not have inter-thread dependencies. The work cited
here is that their evaluations have primarily used scientific workloads, whereas we investigate commercial
workloads as well.

3 Identifying and Tracking Locks

We used the Simics full-system simulation [3] infrastructure from the UW Multifacet group, which runs
commercial and scientific workloads on an unmodified Solaris 9 operating system. Modifications were made
to the out-of-order processor model (opal), the memory model (ruby), and the cache coherence protocol
definition for slicc.

The workloads used in this study are Barnes-Hut (512 bodies), OLTP (10 transactions), Apache and
Zeus (100 transactions each), and SpecJBB (1000 transactions). Larger workloads were not run due to the
length of simulation required. High variability in these relatively short runs is mitigated as described in [1]
and taking a sample of 10 runs per data point.

3.1 Hardware Primitives

The SPARC V9 ISA provides the application/system writer with atomic read/write primitives that are used
to implement synchronization. These primitives are test&set (ldstub), compare&swap (casa), and swap-
always (swap).

These primitives can be used to construct a wide variety of synchronization mechanisms. For the purpose
of this study, we focus on synchronization that enforces mutual exclusion (mutex) by using using these
primitives to manage a lock. For mutex locks, only one thread is allowed to hold the lock at a particular
point in time. In the case of contention — other threads trying to acquire the same lock — these other
threads must wait until it is released. We also focus only on spin-locks, which continue to emit acquire
attempts until one succeeds.

3.2 Identifying Lock Operations

Because SPARC does not provide obvious acquire and release instructions, we must infer these events by
examining the dynamic instruction stream. To accomplish this, a global Lock Address Table is maintained
in opal, which tracks all memory operation on addresses that have been previously accessed by at least one
atomic instruction. Every time an atomic instruction is seen, the physical address is looked up in this table.
If the address is not present, we assume this instruction is accessing a lock, and add an entry. All subsequent
memory accesses to this address (atomic or not) are tracked via the table entry. Each table entry tracks the
status of the lock assumed to reside at the entry’s address.

Acquire and release events are inferred based on the lock’s status in the table, the sequencer performing
the operation, and the values read and written by the memory instructions to these addresses as follows:

• An atomic operation writing a non-zero value and reading a zero that was previously stored is consid-
ered a successful acquire.

• An atomic operation that reads a non-zero value while storing a non-zero is considered a failed acquire
attempt (contention).

• A store instruction writing zero is considered a release operation.

• A load instruction is considered a precursor to an acquire attempt (e.g, first test operation of test and
test&set).

These inference rules are fairly restrictive. Non-mutex synchronization will not be observed, and mutex
locks that do not contain a value of zero when unset will not be observed. Due to time restrictions, we were
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#define TSB_LOCK_ENTRY(tsb8k, tmp1, tmp2, label) \
ld [tsb8k], tmp1 ;\

label: ;\
sethi %hi(TSBTAG_LOCKED), tmp2 ;\
cmp tmp1, tmp2 ;\
be,a,pn %icc, label/**/b /* if locked spin */ ;\

ld [tsb8k], tmp1 /* delay slot */ ;\
casa [tsb8k] ASI_N , tmp1, tmp2 ;\
cmp tmp1, tmp2 ;\
bne,a,pn %icc, label/**/b /* didn’t lock so try again */ ;\

ld [tsb8k], tmp1 /* delay slot */ ;\
/* tsbe lock acquired */ ;\
membar #StoreStore

Figure 1: Test and Test&Set Code Sequence from Solaris 8 MMU

unable to account for other classes of synchronization in this study, and our results thus present an underes-
timate of synchronization activity. Nonetheless, a significant number of locks matching these semantics are
observed for nearly all our workloads.

To validate our assumptions, we combed through the source code of the Solaris 8 kernel to examine
locking mechanisms. This was done by simply looking at the places within the kernel that used the atomic
operations provided by the SPARC ISA. Solaris synchronizes using four higher-level primitives: mutex
locks, condition variables, reader-writer locks and semaphores. We limited our code search to mutex locks
because that was the focus of our study. While the ldstub (load-store unsigned byte) instruction directly
implements test&set by storing a 0xff to the memory location, and returning its previous contents, we have
observed other atomics such as casa (compare&swap) being used for mutex locks as well, and included
them in our source code search. Because casa can set the value to other numerical values, it can conse-
quently be used to set things like thread IDs to provide more information about who is actually holding the
lock.

We found many examples of spin-locks in the kernel, one of which is shown in Figure 1. This code
sequence, taken from sfmmu_asm.s, defines a macro that tries to grab the lock for a translation store buffer
(MMU) entry. This set of instructions is clearly executing a test and test&set type of primitive even though
there is a casa instead of an ldstub. The comments (except for “delay slot”) are copied directly from the
code.

3.3 Tracking Lock Latencies

Once mutex-related instructions are identified, various statistics are recorded including the latency of the
acquire and release operations. As illustrated by Figure 2, we divide the latency involved in these lock
operations into three categories: acquire latency, release latency and transfer latency. For an uncontended
lock, the acquire latency is simply the latency of the instruction performing the acquire operation (often
involving a cache miss). However, for a contented lock, a thread may execute many failing acquire (or
test) instructions before actually acquiring the lock. We consider the acquire latency to be the time from
the beginning of the first acquire (or test) attempt until the end of the successful acquire. Release latency
is simply the latency of release operation — in most cases a store instruction, which might also involve a
cache miss. For a contended lock, there is also a latency involved in transferring the lock. Basically, this
is the delay between the start of the release operation and the end of the subsequent acquire operation from
one of the contending threads. In the case of an uncontended lock, which sees no acquire attempt before the
release, transfer latency is considered to be zero.

Context switches introduce a potential complication in measuring acquire latency. Since a thread can be
de-scheduled while trying to acquire a lock,2 calculating acquire latency by taking the difference between the
first attempt and successful acquire will result in an overestimate of contention (because the thread wasn’t

2This happens frequently, as some of the Solaris locks sleep the thread after some number of failing acquires
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Figure 3: Fraction of Cycles Spent on Mutex Operations Leftmost bar is a single processor core per chip
(16 chips), and rightmost bar is 16 processors per chip with one chip.

contending for the lock while it wasn’t running). Normally, acquire latency is accumulated over all acquire
attempts for a particular lock from a particular sequencer. If we observe a context switch between any two
successive attempts, we do not accumulate the latency between these attempts.

3.4 Tracking Memory Data Sources

The slicc coherence protocol description was augmented to track the data source for all memory operations
(e.g. local-L1, on-chip-L1, L2, main memory, etc.), and the interface between ruby and opal was the modi-
fied to pass this source back to opal. opal then records the latency and source for each completing instruction
that initiates a memory request (i.e. does not hit in an MSHR). Because memory operations are initiated
by squashed instructions as well, there is not a direct correspondence between instructions for which opal
records information and memory operations which ruby observes. We turned off the prefetching of store
addresses before the store data is available to accurately record sources of these operations as well.

4 Results

All experiments were run for a 16-processor CMP system. Configurations vary the number of processors per
chip from 1 to 16. Each processor had private, split L1 I/D caches, and each chip has a shared L2 cache. The
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Figure 4: Ratio of Cache-to-cache Transfers Resulting from Locks Leftmost bar is a single processor core
per chip (16 chips), and rightmost bar is 16 processors per chip with one chip.

size of the L2 cache per chip remains constant for all configurations, thus the configuration with 1 processor
per chip (and hence 16 chips) has 16 times the aggregate L2 capacity of the configuration with 16 processors
per chip.

Each data point in our results is the average of ten runs, with the 95% confidence interval shown using
error bars.

4.1 The Cost of Mutual Exclusion

The cost of maintaining mutual exclusion comes both in terms of the latency to contend, acquire and release
a lock, and in terms of the bandwidth consumed while performing these three functions.

Figure 3 shown the first of these costs: the number of cycles all processors spend waiting for con-
tention, acquire, and release, as a ratio of the total cycles executed by all processors. As evident from the
graph, most workloads spend a significant fraction of their time performing mutex synchronization, which
for some configurations is over 30%. One anamoly is SpecJBB, which for all configurations, spends less
than 1% on mutex operations. This appears to be a result of most of the synchronization in SpecJBB not
conforming exactly to our assumptions described in Section 3.2, and not a result of JBB performing almost
no synchronization. Further study is needed to make a more rigorous claim.

An interesting trend that is apparent in Figure 3 is that the fraction of mutex cycles diminishes as the
number of cores on a chip increases. As shown later in Figure 6, a high frequency of mutex operations result
in cache-to-cache transfers, which become much faster on-chip. These fast transfers aid mutex operations
more on average than other operations.

Figure 4 presents the total number of cache-to-cache transfers that are triggered by locks within the
workload runs. These are measured as a ratio of the total cache-to-cache transfers that are observed for
that benchmark. We see that the number of cache-to-cache transfers that occur due to locks are anywhere
between 10% to 35%, which can be though of as a very rough estimate of the cost of mutual exclusion in
terms of inter-processor bandwidth.

Figure 5 presents the source of data on an L1 miss while varying the number of processing cores. We
measure five quantities in this graph and the next one. These are the cases when the source of the L1
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Figure 5: Histogram of data sources for L1 misses for all Operations Leftmost bar is a single processor
core per chip (16 chips), and rightmost bar is 16 processors per chip with one chip.
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Figure 6: Histogram of Data Sources for L1 Misses for Lock Operations Leftmost bar is a single processor
core per chip (16 chips), and rightmost bar is 16 processors per chip with one chip.
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Figure 7: Number of Cache-to-cache Transfers Resulting from Locks Compared to Number of Lock Own-
ership Transfers

cache miss is: located in the L2 cache, causes an off chip data-transfer, causes an on-chip data transfer,
causes a remote upgrade and causes the request to go to main memory. Because of the decreasing L2 size
per processor for the multi-core-per-chip configurations, we observe a decreased number of requests being
satisfied in the L2, and a corresponding increase in requests satisfied by main memory. The only benchmark
that does not conform to this trend is OLTP, which shows an increased L2 hit rate as more processing cores
share an L2. We also note that the total cache-to-cache transfers (measured as a sum of the off-chip and
on-chip transfers) decreases as we add processing cores to a chip. This could simply be a capacity issue at
the L1, i.e. the small L1s evict the shared data before it needs to be transfered. This phenomenon is most
pronounced in OLTP, which is likely the cause of the increase in L2 hits.

Figure 5, however, is significant for our work when compared to Figure 6, which presents the source of
data of an L1 miss for lock operations only. If the lock request misses in the L1 cache, it translates to a large
amount of cache-to-cache transfers — much larger than the number of cache-to-cache transfers seen from
all memory operations.

5 On-Chip Lock Arbiter

Due to the relatively coarse granularity of these workloads, and the fast nature of on-chip cache-to-cache
data transfers, only a small percentage of total execution time is spent waiting on mutex locks for the CMP
configuration with all 16 cores on a single chip. However, as the number of chips increases, the amount of
time spent acquiring and releasing mutex locks increases substantially. Thus it seems that simple spin-locks
are sufficient for single-chip multiprocessors, but are less adequate for multiple chip configurations.

Figure 7 presents the total number of cache-to-cache transfers resulting from lock operations vs. the
number of lock ownership transfers. In the best case, only one cache-to-cache transfer is necessary per
ownership transfer. However, even in the presence of moderate contention, the number of cache-to-cache
transfers per ownership transfer increases quickly for spin-locks. In most cases, the number of cache-to-
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cache transfers is significantly larger than the number of ownership transfers, especially for the one core-
per-chip configurations. Though upgrades transaction due to lock operations do not involve a data transfer,
they do involve numerous invalidate and acknowledgment messages, are not strictly necessary to transfer
ownership of a lock, and are included on this graph as well.

This result indicates the amount of bandwidth spent in grabbing ownership of the lock resulting from the
spin-lock mechanism. In some cases, like OLTP, the number of cache-to-cache transfers is four times that
of lock ownership transfers. Though this may be acceptable for fast on-chip communications, these excess
cache-to-cache transfers are more costly for off-chip communication, indicating that queue based locks may
be more appropriate.

One possible way to improve the performance of spin-locks in a multi-chip configuration is to limit the
number of times the lock ping-pongs between chips. This could be accomplished by dynamically converting
spin-locks into queue-based locks, and assigning a queue priority based on the locality of the requesting
processor to the processor holding the lock.

We propose using an on-chip lock arbiter to perform this functionality. At the high level, the arbiter
observes the L1 miss stream and intercepts requests for addresses which it predicts contain locks. Lock
addresses, as well as test, acquire and release operations, are inferred much the same way as in Section 3.2.
These addresses are simply under the control of a separate coherence mechanism, which must ensure the
same invariants as the regular coherence protocol, but can change the timing of these operations.

Acquire operations for a lock which the arbiter believes is held are simply delayed until a release oper-
ation is observed for that lock. At this point, the first queued acquire request is allowed to complete. This
causes the processors to block on contention, rather than continuously spin. The arbiter must also intercept
off-chip requests for the addresses it cares about, but can prioritize on-chip and off-chip requests. One possi-
ble policy might be to allow all on-chip processors to acquire the lock once (if they wish) before the remote
request is processed. Careful thought must be performed to ensure that consistency model violations will
not occur, and safety mechanisms such as a time-out are necessary as well.

We expect to see little performance improvement when using a lock arbiter with a single-chip config-
uration for these workloads because the amount of time processors spend contending for locks in these
workloads is fairly small. A reduction in on-chip bandwidth use may indirectly affect performance, but it
remains unclear whether this improvement would justify the complexity of the arbiter. However, by using a
priority policy, we expect that the number of off-chip cache-to-cache transfers for lock addresses would be
significantly reduced which would likely reduce the overall acquire latency and inter-chip bandwidth.

Due to the complexity of modifying the simulator to perform this functionality, we decided against
implementing the lock arbiter for this project. In addition, the many complex interactions between the
high-level software, locking libraries, and operating system must be considered as well to do justice to an
evaluation, and we lacked the time to do that.

6 Conclusions and Future Work

Though we limited our study to a subset of synchronization mechanisms, we still observe a surprisingly
high amount of cycles spent waiting for lock acquisition: 8-30% for single-chip CMPs, and 10-40% for
multi-chip CMP configurations (excluding SpecJBB). Had we considered all classes of synchronization,
this amount would only have risen.

We came to several conclusions as part of this study. First, for most workloads with a single-chip
CMP configurations (with many processing cores on a single chip), spin locks are sufficient. Spin locks
are easy and an attractive alternative to something more complex, like queue-based locks. In the case of
CMP configurations with one processing core per chip (much like olden-day SMPs where individual chips,
usually with one processing core, plugged into a backplane bus), queue-based locks make more sense. This
is because off-chip latency is much longer and bandwidth is more precious. The second part of this claim
(with old-style SMP configurations) agrees with earlier QOLB [2] work. We also believe that CMPs enable
finer granularities for parallelization, but this remains to be evaluated.

There are several avenues for future work on this topic. First, we propose to study the synchronization
primitives in greater detail, above and beyond mutex locks. The second path for future work could include
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implementing the on-chip arbiter to see whether intelligently passing locks between chips actually gains
us anything. Looking at the temporal locality of lock requests within one chip of a CMP might provide
intuition into sizing the arbiter. We are also interested in writing synthetic benchmarks with very fine grain
parallelism to see what their performance is like on CMPs.

References

[1] A. Alameldeen and D. Wood. Variability in architectural simulations of multi-threaded workloads. In
Proceedings of the 9th IEEE Symposium on High-Performance Computer Architecture, February 2003.

[2] Alain Kagi, Doug Burger, and James R. Goodman. Efficient synchronization: Let them eat QOLB. In
ISCA, pages 170–180, 1997.

[3] Peter Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hållberg, Johan
Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A full system simulation
platform. IEEE Computer, 35(2):50–58, Feb 2002.

[4] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems (TOCS), 9(1):21–65, 1991.

[5] Efficient Synchronization Primitives. Appeared in asplos-iii, april 1989, pp. 64-75.

[6] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly concurrent multi-
threaded execution. In Proceedings of the 34th annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 294–305. IEEE Computer Society, 2001.

[7] Ravi Rajwar, Alain Kagi, and James R. Goodman. Improving the throughput of synchronization by
insertion of delays. In HPCA, pages 168–, 2000.

9


