
Proceedings of the 5th International Symposium on High Performance Computer Architecture, January 1999.

Supporting Fine-Grained Synchronization on a Simultaneous Multithreading Processor

Dean M. Tullsen
Dept. of Computer Science and Engineering

University of California, San Diego
tullsen@cs.ucsd.edu

Jack L. Lo
Transmeta Corporation

Santa Clara, CA
jlo@transmeta.com

Susan J. Eggers, Henry M. Levy
Dept. of Computer Science and Engineering

University of Washington�
eggers,levy � @cs.washington.edu

Abstract
This paper proposes and evaluates new synchronization

schemes for a simultaneous multithreaded processor. We
present a scalable mechanism that permits threads to cheaply
synchronize within the processor, with blocked threads con-
suming no processor resources. We also introduce the concept
of lock release prediction, which gains an additional improve-
ment of 40%. Overall, we show that these improvements in
synchronization cost enable parallelization of code that could
not be effectively parallelized using traditional techniques.

1. Introduction

The performance of a multiprocessor’s synchronization
mechanisms determine the granularity of parallelism that can
be exploited on that machine. Synchronization on a conven-
tional multiprocessor carries a high cost due to the hardware
levels at which synchronization and communication must oc-
cur (e.g., main memory). As a result, compilers and program-
mers must decompose parallel applications in a coarse-grained
way in order to reduce synchronization overhead.

This paper examines fine-grained synchronization on a si-
multaneous multithreaded (SMT) processor — a processor in
which the CPU can issue instructions from multiple threads
in a single cycle [10, 9]. Multithreaded processors provide an
opportunity to greatly decrease synchronization cost, because
the communicating threads are internal to a single processor.
While previous work has shown the benefits of SMT on par-
allel workloads [6, 7], those studies relied on traditional syn-
chronization mechanisms, ignoring the potential advantages
(and problems) of synchronizing in an SMT CPU.

A simultaneous multithreading processor differs from a
conventional multiprocessor in several crucial ways that in-
fluence the design of SMT synchronization: (1) Threads on
an SMT processor compete for all fetch and execution re-
sources each cycle. Synchronization mechanisms (e.g., spin
locks) that consume any shared resources without making
progress, can impede other threads. (2) Data shared by threads
is held closer to the processor, i.e., in the thread-shared L1
cache; therefore, communication is dramatically faster be-
tween threads. Synchronization must experience a similar in-
crease in performance to avoid becoming a bottleneck. (3)
Hardware thread contexts on an SMT processor share func-
tional units. This opens the possibility of communicating syn-
chronization and/or data much more effectively than through
memory.

This paper presents a scalable synchronization mecha-
nism for SMT that permits threads to cheaply synchronize
within the processor, with blocked threads consuming no
processor resources. The basic mechanism, blocking ac-
quire and release, is a hardware implementation of traditional
software synchronization abstractions, implemented with a
thread-shared hardware lock box. The lock box is a simple
hardware mechanism that enables the transfer of memory-
based locks between threads on the same processor in just a
few cycles. This latency can be further reduced by a new tech-
nique called lock-release prediction, which minimizes the cost
of restarting a blocked thread.

Our results show an order of magnitude improvement in
the granularity of parallelism made available with this new
synchronization, relative to synchronization on conventional
shared-memory multiprocessors. We demonstrate that it is
sufficiently lightweight to permit parallelization of new codes
that could not previously be parallelized.

2. Synchronization Mechanisms

In this section, we begin with a brief description of exist-
ing synchronization mechanisms. We then present our goals
for synchronization in SMT processors and describe the new
mechanism that we evaluate in this paper.

2.1. Review of Existing Synchronization Schemes
A number of different synchronization mechanisms exist

in commercial or research multiprocessors, both conventional
and multithreaded. Most common are spin locks, such as
test-and-set. While test-and-set modifies mem-
ory, optimizations typically allow the spinning to take place in
the local cache to reduce bus traffic. More recently, Lock-Free
synchronization has been widely studied [4] and is included
in modern instruction sets, e.g., the DEC Alpha’s load-locked
(ldl l) and store-conditional (stl c) (collectively, LL-SC).
Rather than achieve mutual exclusion by preventing multiple
threads from entering the critical section, lock-free synchro-
nization prevents more than one thread from successfully writ-
ing data and exiting the critical section.

The Tera [2] and Alewife [1] machines rely on full/empty
(F/E) bits associated with each memory block. F/E bits allow
memory access and lock acquisition with a single instruction,
where the full/empty bit acts as the lock, and the data is re-
turned only if the lock succeeds.

The M-Machine [5], attaches full/empty bits to registers.
Synchronization among threads on different clusters or even



within the same cluster is achieved by a cluster-local thread
explicitly setting a register to empty, after which a write to the
register by another thread will succeed, setting it to full. Keck-
ler et al. [5] provide a good description of these mechanisms in
a study with similar goals to ours. We do not consider register
full/empty bits to be sufficient in themselves for SMT synchro-
nization. Differences between the M-machine and SMT result
in the different directions taken by our two studies: (1) the M-
machine is a message-passing multicomputer, so its synchro-
nization mechanisms do not have to scale to a shared-memory
MP; and (2) no single execution unit is shared by all threads,
so the M-Machine cannot use execution-unit-based synchro-
nization. The CRAY X-MP also introduced shared registers
for synchronization, but with the synchronization bits decou-
pled from the data registers.

2.2. Goals for SMT Synchronization

This section identifies the desired goals for SMT synchro-
nization. These goals are motivated by the special properties
of an SMT processor, as described in Section 1. Given these
properties, synchronization on an SMT processor should be:

(1) High Performance. High performance implies both high
throughput and low latency. Full/empty bits on main memory
provides high throughput but high latency.

(2) Resource-conservative. Both spin locks and lock-free
synchronization consume processor resources while waiting
for a lock, either retrying or spinning, waiting to retry. To
be resource-conservative on a multithreaded processor, stalled
threads must use no processor resources.

(3) Deadlock-free. We must avoid introducing new forms of
deadlock. SMT shares the instruction scheduling unit among
all executing threads and could deadlock if a blocked thread
fills the instruction queue, preventing the releasing instruction
(from another thread) from entering the processor.

(4) Scalable. The same primitives should be usable to syn-
chronize threads on different processors and threads on the
same processor, even if the performance differs. Full/empty
bits on registers are not scalable.

None of the existing synchronization mechanisms pre-
sented in Section 2.1 meets all of these goals when used in
the context of SMT.

2.3. A Mechanism for Blocking SMT Synchronization

Here we present a design for SMT synchronization that
meets our criteria. It uses hardware-based blocking locks. A
thread that fails to acquire a lock blocks and frees all resources
it is using except the hardware context itself. A thread that re-
leases a lock upon which another is blocked causes the blocked
thread to be restarted. The actual primitives consist of two in-
structions:
Acquire(lock) – This instruction acquires a memory-

based lock. The instruction does not complete execution until
the lock is successfully acquired; therefore, it appears to soft-
ware like a test-and-set that never fails.

Release(lock) – This instruction writes a zero to
memory if no other thread in the processor is waiting for
the lock; otherwise, the next waiting thread is unblocked and
memory is not altered.

These primitives look familiar, not because they are com-
mon hardware primitives, but because they are common soft-
ware interfaces to synchronization (typically implemented
with spinning locks). For the SMT processor, we implement
these primitives directly in hardware.

The synchronization instructions are implemented with a
small processor structure associated with a single functional
unit. The structure, which we call a lock-box, has one entry per
context (per hardware-supported thread). Each entry contains:
the address of the lock, a pointer to the lock instruction that
blocked and a valid bit.

When a thread fails to acquire a lock (a read-modify-write
of memory returns nonzero), the lock address and instruction
id are stored in that thread’s lock-box entry, and the thread is
flushed from the processor after the lock instruction. When an-
other thread releases the lock, hardware performs an associa-
tive comparison of the released address against the lock-box
entries. On finding the blocked thread, the hardware allows
the original lock instruction to complete, allowing the thread
to resume, and invalidates the blocked thread’s lock-box entry.
A release for which no thread is waiting is written to memory.

The acquire instruction is restartable. Because it never
commits if it does not succeed, a thread that is context-
switched out of the processor while blocked for a lock will
always be restarted with the program counter pointing to the
acquire or earlier.

Flushing a blocked thread from the instruction queue (and
pre-queue pipeline stages) is critical to preventing deadlock.
The mechanism needed to flush a thread is the same mecha-
nism used after a branch misprediction on an SMT processor.
We can prevent starvation of any single thread without adding
information to the lock box simply by always granting the lock
to the thread id that comes first (including wrap-around) after
the id of the releasing thread.

The entire mechanism is scalable (i.e., it can be used be-
tween processors), as long as a release in one processor is vis-
ible to a blocked thread in another. We discuss several ways
that this could be accomplished in [11].

3. Characterizing Synchronization Efficiency

Using a detailed trace-driven simulator, we compare sev-
eral alternative synchronization mechanisms on an SMT ar-
chitecture. The simulator executes unmodified Alpha object
code using emulation-based, instruction-level simulation tech-
niques. It models the execution pipelines, memory hierarchy,
TLBs, and branch prediction logic of an 8-issue SMT proces-
sor. More details of the processor and memory system model
are given in [11].

In this section we define an efficiency metric for synchro-
nization and use it to evaluate the speed of different synchro-



single-threaded:
for (i = 0; i � N; i++)

A[i+1] = A[i] + independent computation
parallelized:
(for each thread)
for (i = threadId; i � N; i += numThreads)

temp = independent computation
acquire(lock[threadId])
A[i+1] = A[i] + temp
release(lock[nextId])

Figure 1. Our synchronization efficiency test

nization schemes. Our vehicle for expressing the metric is a
loop containing a mix of loop-carried dependent (serial) com-
putation and independent (parallel) computation, that can rep-
resent a wide range of loops or codes with different mixes of
serial and parallel work (Figure 1). Our efficiency metric is the
ratio of parallel-to-serial computation at which the threaded
version of the loop begins to outperform a single-threaded ver-
sion. The amount of independent computation (work that con-
tains no loop-carried dependences in the i loop) is varied by
enclosing it in a loop that iterates between 1 and 128 times.
Each iteration of the independent computation loop does a
load (a cache hit), a floating-point multiply and and a float-
ing point add. The result is then added to A[i] in the critical
section.

In Figure 2 Single-thread is the performance of the serial
version of the loop, which defines the break-even point. SMT-
block is the base SMT synchronization with blocking acquires
using the lock-box mechanism. SMT-ll/sc uses the lock-free
synchronization currently supported by the Alpha. To imple-
ment the ordered access in the benchmark, the acquire prim-
itive is implemented with load locked and store conditional
and the release is a store instruction. SMP-* each use the same
primitives as SMT-block, but force the synchronization (and
data sharing) to occur at different levels in the memory hi-
erarchy. This mimics the synchronization and communication
performance of systems with contexts less tightly coupled than
on an SMT, such as a typical shared-memory multiprocessor
(SMP-Mem), a tightly-coupled cluster of processors sharing
an off-chip cache (SMP-L3), and a single-chip multiprocessor
with a shared secondary cache (SMP-L2). Synchronization
within a processor is more than an order of magnitude more ef-
ficient than synchronization in memory. The break-even point
for parallelization is about 5 computations for SMT-block, and
over 80 for memory-based synchronization. Thus, an SMT
processor will be able to exploit opportunities for parallelism
that are an order of magnitude finer than those needed on a tra-
ditional multiprocessor, even if the SMT processor is using ex-
isting synchronization primitives (e.g., the lock-free LL-SC).

However, blocking synchronization does outperform lock-
free synchronization; for this benchmark the primary factor is
not resource waste due to spinning, but the latency of the syn-
chronization operation. We observed the critical path through
successive iterations of the for loop when the independent

0

10

20

30

0 20 40 60 80 100

E
xe

cu
tio

n 
T

im
e 

(m
ill

io
ns

 o
f 

cy
cl

es
)

Amount of Independent Computation

single-thread

SMT-block

SMT-ll/sc

SMP-L2

SMP-L3

SMP-Mem

Figure 2. The speed of synchronization configurations.
computation is small and performance is dominated by the
loop-carried calculation. In that case the critical path becomes
the locked (serial) region of each iteration. For the lock-free
synchronization, the critical path is at least 20 cycles per it-
eration [11]. A key component is the branch misprediction
penalty when the thread finally acquires the lock and the LL-
SC code stops looping on lock failure. For blocking SMT
synchronization, the critical path through the loop is 15 cy-
cles. This time is dominated by the restart penalty (to get a
blocked thread’s instructions back into the CPU).

In summary, fine-grained synchronization, when performed
close to the processor, changes the available granularity of
parallelism by an order of magnitude. We will examine this
potential in more detail later using common program loops.
Those loops, like our efficiency benchmark, will put the speed
of synchronization on the critical performance path. The fol-
lowing optimization reduces that critical path length.
Faster Synchronization Via Speculative Restart. The
restart penalty for a blocked acquire assumes that the
blocked thread is not restarted until the corresponding
release instruction retires. It then takes several cycles to
fetch the blocked thread’s instruction stream into the proces-
sor. While the release cannot perform until it retires (or
is at least guaranteed to retire), it is possible to speculatively
restart the blocked thread earlier; the thread can begin fetch-
ing and even execute instructions that are not dependent on the
acquire.

In Figure 3, we show the results of speculatively restart-
ing a blocked thread as soon as the release is seen by the
decode unit. A history based on thread ID and PC is used to
predict which thread will be released by a given instruction.
Speculatively restarting a thread before the releasing instruc-
tion retires reduces the critical path from 15 cycles to nine cy-
cles (when the prediction is correct), lowering the break-even
point to about 3 iterations of the independent loop (Figure 3).

4. Case Studies in Parallelization With Fast Syn-
chronization

Any program traditionally regarded as parallel has achieved
performance in the face of relatively high-cost synchroniza-
tion, and should run well with any of the synchronization
mechanisms we have considered. However, efficient fine-grain
parallelism will create a new class of “parallel” programs. The
size of that new class, and their exact performance, will in
large part be determined by the speed of the synchronization



0

4

8

0 5 10 15 20 25E
xe

cu
tio

n 
T

im
e 

(m
ill

io
ns

 o
f 

cy
cl

es
)

Amount of Independent Computation

single-thread

SMT-specRel

SMT-block

SMT-ll/sc

Figure 3. The performance of speculative restart.

mechanism. Because this type of fine-grain parallelism is not
available on existing systems, we have access to no compiler
which can identify and transform code appropriately. Thus
we have identified some potential code by hand to use as case
studies. Although we hand-insert synchronization in these
loops, we do so at the source level, and do not otherwise alter
the code significantly (except for obvious compiler transfor-
mations, like a reduction in one case). For much more detail
on how the loops were parallelized, see [11].

We examine five loops that a standard parallel compiler
would not parallelize: the two most important loops in
espresso and three of the Livermore loops. These loops are
significant exactly because of the compiler’s assumption that
parallelizing would not be worthwhile.We attempt to paral-
lelize these loops across 8 threads using our fine-grained SMT
synchronization mechanism, and report the success stories and
one less-than-successful effort.
Espresso. For the SPEC benchmark espresso and the input
file ti.in, a large part of the execution time is spent in two loops
in the routine massive count.

The first loop is a doubly-nested loop with both ordered and
un-ordered dependences across the outer loop. The first depen-
dence in this loop is a pointer that is incremented until it points
to zero (the loop exit condition). The second dependence is a
large array of counters which are conditionally incremented
based on individual bits of calculated values.

Figure 4 (Loop 1) shows that both SMT versions perform
well; however, there is little performance difference with spec-
ulative restart because collisions on the counters are unpre-
dictable (thus restart prediction accuracy is low). With LL-SC,
ordered access to the pointer must use software versions of
acquire and release. The atomic incrementing of coun-
ters is more tailor-made for lock-free synchronization; how-
ever, there are still enough collisions to create some wasted
computation. Memory-based synchronization clearly cannot
overcome the high cost of synchronization and communica-
tion.

The second component of massive count is a single loop
primarily composed of many nested if statements with some
independent computation. The loop has four scalar depen-
dences for which we must preserve original program order
(shared variables are read and conditionally changed) and two
updates to shared structures that need not be ordered.

SM
P-M

em

SM
T-ll/sc

SM
T-block

SM
T-specRel

SM
P-M

em

SM
T-ll/sc

SM
T-block

SM
T-specRel

0

1

2

0

1

2

Sp
ee

du
p 

O
ve

r 
Si

ng
le

-T
hr

ea
d 

E
xe

cu
tio

n

Espresso Loop 1 Espresso Loop 2

Figure 4. The speedup on two espresso loops.

The performance of the blocking synchronization was dis-
appointing (Figure 4, loop 2). Further analysis uncovered sev-
eral contributing factors. (1) The single-thread loop already
has significant ILP. (2) Most of the shared variables are in reg-
isters in the single-thread version, but must be stored in mem-
ory for parallelization. (3) The locks constrained the efficient
scheduling of memory accesses in the loop. (4) The branches
are highly correlated from iteration to iteration, allowing our
branch predictor to do very well for serial execution; however,
much of this correlation was lost when the iterations went to
different threads. Despite all this, choosing to parallelize this
loop still would not hurt performance given our fast synchro-
nization mechanisms.

With LL-SC, the ordered accesses had to be protected in the
same manner as the blocking synchronization, but with soft-
ware acquire and release. For the unordered variables, they
were each updated atomically using LL-SC. The overall per-
formance was poor due to spinning for contested locks.

Livermore Loops. Unlike most of the Livermore Loops,
loops 6, 13, and 14 are not parallelized by, for example, SUIF,
because they each contain cross-iteration dependencies. These
loops have a reasonable amount of code that is independent,
however, and should be amenable to parallelization, given
fine-grained synchronization.

Loop 6 is a doubly-nested loop that reads a triangular re-
gion of a matrix. The inner loop accumulates a sum. While
parallelization of this loop (Figure 5, Loop 6), does not make
sense on a conventional multiprocessor, it becomes profitable
with standard SMT synchronization, and more so with specu-
lative restart support. Later in this section, we’ll show a triv-
ial change to get much better performance. LL-SC performs
poorly due to the high overhead of threads spinning at the bar-
rier around the reduction for the sum.

Loop 13 has only one cross-iteration dependence, the in-
crementing of an indexed array, which happens in an unpre-
dictable, data-dependent order. Although it is not necessary to
preserve the order of these updates, we chose to do so because
(1) these loops are very uniform, and (2) the performance of
the speculative restart prediction is better with a forced or-
dering. Loop 13 achieves more than double the throughput
of single-thread execution with SMT synchronization and the
speculative restart optimization. Here LL-SC also performs
well, since the only dependence is a single unordered atomic
update. This can be done with a single ldl l, stl c pair.



SM
P-M

em

SM
T-ll/sc

SM
T-block

SM
T-specRel

SM
P-M

em

SM
T-ll/sc

SM
T-block

SM
T-specRel

SM
P-M

em

SM
T-ll/sc

SM
T-block

SM
T-specRel

0

1

2

0

1

2

Sp
ee

du
p 

O
ve

r 
Si

ng
le

-T
hr

ea
d 

E
xe

cu
tio

n

Loop 6 Loop 14Loop 13

Figure 5. Speedup for three of the Livermore loops.

Loop 14 is actually three loops, which are trivial to fuse.
This maximizes the amount of parallel code available to exe-
cute concurrently with the serial portion. The serial portion is
two updates to another indexed array, like Loop 13.

Figure 6 shows that different numbers of threads were
appropriate for different loops and different SMT synchro-
nization mechanisms. Loop 6, which only achieved a small
speedup with 8 threads, had linear speedup with two, then fell
off. Performance on Loops 13 and 14 only improves beyond 2
threads with speculative restart. These results indicate that (1)
it is important to choose the level of parallelism carefully and
(2) the optimal choice of threads is dependent on the loop and
the underlying synchronization mechanism.

For the five loops examined (two from espresso, three from
livermore), none of which could be parallelized on a conven-
tion multiprocessor, fine-grained synchronization enabled sig-
nificant parallel speedups on four and no speedup or slowdown
on one. In each case, parallelization created execution paths
that made the speed of synchronization critical to the perfor-
mance of the code, as all were sensitive to the exact mecha-
nism used.

5. Related Work

Section 2.1 described other multithreaded architectures
and multithreaded synchronization mechanisms. Other work
which is related to this study follows.

Pai, et al. [8] describe a synchronization buffer for multi-
processors of single-threaded processors. The synchronization
buffer is an off-chip structure which holds lock addresses from
executing lock instructions. It retries the lock so that software
does not have to loop. They do not block the thread, nor do
they associate releases with locks in their structure.

Bradford and Abraham [3] propose hardware-implemented
semaphores which block a thread waiting for a semaphore.
They compare this scheme with spin-waiting and OS-
implemented blocking synchronization.

6. Summary

We have proposed a new synchronization mechanism based
on a simple hardware structure called a lock box, tailored
specifically for an SMT processor. This mechanism (1) max-
imizes synchronization efficiency by ensuring that threads
waiting on synchronization consume no execution resources,
and (2) minimizes synchronization latency by using lock-

∆

∆

∆
∆

♦

♦ ♦

♦

2 4 6 8

0

0.5

1

1.5

2

2.5

S
pe

ed
up

 O
ve

r 
S

in
gl

e-
th

re
ad

 E
xe

cu
tio

n

Number of Threads

∆ SMT-block

♦ SMT-specRel

∆

∆ ∆ ∆

♦

♦

♦ ♦

2 4 6 8
Number of Threads

∆ SMT-block

♦ SMT-specRel

∆

∆ ∆ ∆

♦

♦

♦ ♦

2 4 6 8

0

0.5

1

1.5

2

2.5

Number of Threads

∆ SMT-block

♦ SMT-specRel

Loop 6 Loop 14Loop 13

Figure 6. Blocking synchronization performance with
varying number of threads.

release prediction to resume blocked threads with no restart
delay.

Acknowledgments
This work was funded by NSF CAREER grant MIP-9701708,

NSF grant MIP-9632977, UC MICRO grant 97-018, and a DEC ex-
ternal research grant US-0040-97. Joel Emer and Rebecca Stamm
contributed ideas and insight to this project.

References
[1] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung,

G. D’Souza, and M. Parkin. Sparcle: An evolutionary processor
design for large-scale multiprocessors. IEEE Micro, June 1993.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith. The Tera computer system. In International
Conference on Supercomputing, June 1990.

[3] J. Bradford and S. Abraham. Efficient synchronizatin for multi-
threaded processors. In Workshop on Multithreaded Execution
Architecture and Compilation, January 1998.

[4] M. Herlihy. A methodology for implementing highly concur-
rent data objects. In Symposium on Principles and Practices of
Parallel Programming, March 1990.

[5] S. Keckler, W. Dally, D. Maskit, N. Carter, A. Chang, and
W. Lee. Exploiting fine-grain thread level parallelism on the
MIT multi-alu processor. In International Symposium on Com-
puter Architecture, June 1998.

[6] J. Lo, S. Eggers, J. Emer, H. Levy, S. Parekh, R. Stamm, and
D. Tullsen. Converting thread-level parallelism into instruction-
level parallelism via simultaneous multithreading. ACM Trans-
actions on Computer Systems, August 1997.

[7] J. Lo, S. Eggers, H. Levy, S. Parekh, and D. Tullsen. Tuning
compiler optimizations for simultaneous multithreading. In In-
ternational Symposium on Microarchitecture, December 1997.

[8] V. Pai, P. Ranganathan, S. Adve, and T. Harton. An evalua-
tion of memory consistency models for shared-memory systems
with ilp processors. In International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, 1996.

[9] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. In Interna-
tional Symposium on Computer Architecture, May 1996.

[10] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In International Sympo-
sium on Computer Architecture, June 1995.

[11] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting fine-
grained synchronization on a simultaneous multithreading pro-
cessor. Technical Report CS98-587, UCSD, June 1998.


