
Database Management Systems, R. Ramakrishnan 1

Database Tuning

Module 5, Lectures 6 and 7

Database Management Systems, R. Ramakrishnan 2

Tuning the Conceptual Schema
❖ The choice of conceptual schema should be guided by

the workload, in addition to redundancy issues:
– We may settle for a 3NF schema rather than BCNF.
– Workload may influence the choice we make in

decomposing a relation into 3NF or BCNF.
– We may further decompose a BCNF schema!
– We might denormalize (i.e., undo a decomposition step), or

we might add fields to a relation.
– We might consider horizontal decompositions.

❖ If such changes are made after a database is in use,
called schema evolution; might want to mask some of
these changes from applications by defining views.

Database Management Systems, R. Ramakrishnan 3

Example Schemas

❖ We will concentrate on Contracts, denoted as
CSJDPQV. The following ICs are given to hold:

JP C, SD P, C is the primary key.
– What are the candidate keys for CSJDPQV?
– What normal form is this relation schema in?

→ →

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)

Database Management Systems, R. Ramakrishnan 4

Settling for 3NF vs BCNF

❖ CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF. (Which FD suggests
that we do this?)
– Lossless decomposition, but not dependency-preserving.
– Adding CJP makes it dependency-preserving as well.

❖ Suppose that this query is very important:
– Find the number of copies Q of part P ordered in contract C.
– Requires a join on the decomposed schema, but can be

answered by a scan of the original relation CSJDPQV.
– Could lead us to settle for the 3NF schema CSJDPQV.

Database Management Systems, R. Ramakrishnan 5

Denormalization

❖ Suppose that the following query is important:
– Is the value of a contract less than the budget of the department?

❖ To speed up this query, we might add a field budget B
to Contracts.
– This introduces the FD D B wrt Contracts.
– Thus, Contracts is no longer in 3NF.

❖ We might choose to modify Contracts thus if the
query is sufficiently important, and we cannot obtain
adequate performance otherwise (i.e., by adding
indexes or by choosing an alternative 3NF schema.)

→

Database Management Systems, R. Ramakrishnan 6

Choice of Decompositions

❖ There are 2 ways to decompose CSJDPQV into BCNF:
– SDP and CSJDQV; lossless-join but not dep-preserving.
– SDP, CSJDQV and CJP; dep-preserving as well.

❖ The difference between these is really the cost of
enforcing the FD JP C.
– 2nd decomposition: Index on JP on relation CJP.
– 1st:

→

CREATE ASSERTION CheckDep
CHECK (NOT EXISTS (SELECT *
FROM PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUP BY C.jid, P.pid
HAVING COUNT (C.cid) > 1))

Database Management Systems, R. Ramakrishnan 7

Choice of Decompositions (Contd.)

❖ The following ICs were given to hold:
JP C, SD P, C is the primary key.

❖ Suppose that, in addition, a given supplier always
charges the same price for a given part: SPQ V.

❖ If we decide that we want to decompose CSJDPQV
into BCNF, we now have a third choice:
– Begin by decomposing it into SPQV and CSJDPQ.
– Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.
– This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.
– To preserve JP C, we can add CJP, as before.

❖ Choice: { SPQV, SDP, CSJDQ } or { SDP, CSJDQV } ?

→ →

→

→

Database Management Systems, R. Ramakrishnan 8

Decomposition of a BCNF Relation

❖ Suppose that we choose { SDP, CSJDQV }. This is in
BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

❖ However, suppose that these queries are important:
– Find the contracts held by supplier S.
– Find the contracts that department D is involved in.

❖ Decomposing CSJDQV further into CS, CD and CJQV
could speed up these queries. (Why?)

❖ On the other hand, the following query is slower:
– Find the total value of all contracts held by supplier S.

Database Management Systems, R. Ramakrishnan 9

Horizontal Decompositions

❖ Our definition of decomposition: Relation is replaced
by a collection of relations that are projections. Most
important case.

❖ Sometimes, might want to replace relation by a
collection of relations that are selections.
– Each new relation has same schema as the original, but a

subset of the rows.
– Collectively, new relations contain all rows of the original.

Typically, the new relations are disjoint.

Database Management Systems, R. Ramakrishnan 10

Horizontal Decompositions (Contd.)

❖ Suppose that contracts with value > 10000 are subject
to different rules. This means that queries on
Contracts will often contain the condition val>10000.

❖ One way to deal with this is to build a clustered B+
tree index on the val field of Contracts.

❖ A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with
the same attributes (CSJDPQV).
– Performs like index on such queries, but no index overhead.
– Can build clustered indexes on other attributes, in addition!

Database Management Systems, R. Ramakrishnan 11

Masking Conceptual Schema Changes

❖ The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

❖ However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be
aware of the change.

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

Database Management Systems, R. Ramakrishnan 12

Tuning Queries and Views

❖ If a query runs slower than expected, check if an
index needs to be re-built, or if statistics are too old.

❖ Sometimes, the DBMS may not be executing the plan
you had in mind. Common areas of weakness:
– Selections involving null values.
– Selections involving arithmetic or string expressions.
– Selections involving OR conditions.
– Lack of evaluation features like index-only strategies or

certain join methods or poor size estimation.

❖ Check the plan that is being used! Then adjust the
choice of indexes or rewrite the query/view.

Database Management Systems, R. Ramakrishnan 13

Rewriting SQL Queries
❖ Complicated by interaction of:

– NULLs, duplicates, aggregation, subqueries.

❖ Guideline: Use only one “query block”, if possible.
SELECT DISTINCT *
 FROM Sailors S
 WHERE S.sname IN

(SELECT Y.sname
 FROM YoungSailors Y)

SELECT DISTINCT S.*
 FROM Sailors S,
 YoungSailors Y
 WHERE S.sname = Y.sname

SELECT *
 FROM Sailors S
 WHERE S.sname IN

(SELECT DISTINCT Y.sname
 FROM YoungSailors Y)

SELECT S.*
 FROM Sailors S,
 YoungSailors Y
 WHERE S.sname = Y.sname

❖ Not always possible ...

=

=

Database Management Systems, R. Ramakrishnan 14

The Notorious COUNT Bug

❖ What happens when Employee is empty??

SELECT dname FROM Department D
 WHERE D.num_emps >

 (SELECT COUNT(*) FROM Employee E
 WHERE D.building = E.building)

CREATE VIEW Temp (empcount, building) AS
SELECT COUNT(*), E.building
 FROM Employee E
GROUP BY E.building

SELECT dname
 FROM Department D,Temp
 WHERE D.building = Temp.building
 AND D.num_emps > Temp.empcount;

Database Management Systems, R. Ramakrishnan 15

Summary on Unnesting Queries
❖ DISTINCT at top level: Can ignore duplicates.

– Can sometimes infer DISTINCT at top level! (e.g.
subquery clause matches at most one tuple)

❖ DISTINCT in subquery w/o DISTINCT at top:
Hard to convert.

❖ Subqueries inside OR: Hard to convert.
❖ ALL subqueries: Hard to convert.

– EXISTS and ANY are just like IN.

❖ Aggregates in subqueries: Tricky.
❖ Good news: Some systems now rewrite under

the covers (e.g. DB2).

Database Management Systems, R. Ramakrishnan 16

More Guidelines for Query Tuning
❖ Minimize the use of DISTINCT: don’t need it if

duplicates are acceptable, or if answer contains a key.
❖ Minimize the use of GROUP BY and HAVING:

SELECT MIN (E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=102

SELECT MIN (E.age)
FROM Employee E
WHERE E.dno=102

❖ Consider DBMS use of index when writing arithmetic
expressions: E.age=2*D.age will benefit from index on
E.age, but might not benefit from index on D.age!

Database Management Systems, R. Ramakrishnan 17

Guidelines for Query Tuning (Contd.)

❖ Avoid using intermediate
relations:

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’

SELECT T.dno, AVG(T.sal)
FROM Temp T
GROUP BY T.dno

vs.

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’
GROUP BY E.dno

and

❖ Does not materialize the intermediate reln Temp.
❖ If there is a dense B+ tree index on <dno, sal>, an

index-only plan can be used to avoid retrieving Emp
tuples in the second query!

Database Management Systems, R. Ramakrishnan 18

Summary of Database Tuning
❖ The conceptual schema should be refined by

considering performance criteria and workload:
– May choose 3NF or lower normal form over BCNF.
– May choose among alternative decompositions into BCNF

(or 3NF) based upon the workload.
– May denormalize, or undo some decompositions.
– May decompose a BCNF relation further!
– May choose a horizontal decomposition of a relation.
– Importance of dependency-preservation based upon the

dependency to be preserved, and the cost of the IC check.
◆ Can add a relation to ensure dep-preservation (for 3NF,

not BCNF!); or else, can check dependency using a join.

Database Management Systems, R. Ramakrishnan 19

Summary (Contd.)

❖ Over time, indexes have to be fine-tuned (dropped,
created, re-built, ...) for performance.
– Should determine the plan used by the system, and adjust

the choice of indexes appropriately.

❖ System may still not find a good plan:
– Only left-deep plans considered!
– Null values, arithmetic conditions, string expressions, the

use of ORs, etc. can confuse an optimizer.

❖ So, may have to rewrite the query/view:
– Avoid nested queries, temporary relations, complex

conditions, and operations like DISTINCT and GROUP BY.

