N\

File Organizations and Indexing

Module 2, Lecture 2

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”
-- Alexander Pope (1688-1744)

Database Management Systems, R. Ramakrishnan

Alternative File Organizations

Many alternatives exist, each ideal for some
situation , and not so good in others:
— Heap files: Suitable when typical access is a file
scan retrieving all records.
— Sorted Files: Best if records must be retrieved In
some order, or only a range’ of records is needed.

— Hashed Files: Good for equality selections.

0 File is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.

0 Hashing function h: h(r) = bucket in which
record r belongs. h looks at only some of the
fields of r, called the search fields.

Database Management Systems, R. Ramakrishnan

\Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
— B: The number of data pages
— R: Number of records per page
— D: (Average) time to read or write disk page

— Measuring number of page 1/0’s ignores gains of
pre-fetching blocks of pages; thus, even 1/0 cost Is
only approximated.

— Average-case analysis; based on several simplistic
assumptions.

[1 Good enough to show the overall trends!

Database Management Systems, R. Ramakrishnan

\Assumptions In Our Analysis

0 Single record insert and delete.

0 Heap Files:
— Equality selection on key; exactly one match.
— Insert always at end of file.

0 Sorted Files:
— Files compacted after deletions.
— Selections on sort field(s).

0 Hashed Files:
— No overflow buckets, 80% page occupancy.

Database Management Systems, R. Ramakrishnan

\Cost of Operations

Heap Sorted Hashed
File File File

Scan all recs

Equality Search

Range Search

Insert

Delete

[1 Several assumptions underlie these (rough) estimates!

Database Management Systems, R. Ramakrishnan

\Cost of Operations

Heap Sorted Hashed
File File File
Scan all recs BD BD 1.25 BD
Equality Search 0.5BD D log,B D
Range Search BD D (log,B + # of 1.25BD
pages with
matches)
Insert 2D Search+BD 2D
Delete Search+ D Search+BD 2D

[1 Several assumptions underlie these (rough) estimates!

Database Management Systems, R. Ramakrishnan

Indexes
N\

0 An Index on a file speeds up selections on the
search key fields for the index.

— Any subset of the fields of a relation can be the
search key for an index on the relation.

— Search key is not the same as key (minimal set of
fields that uniquely identify a record in a relation).

0 An index contains a collection of data entries,
and supports efficient retrieval of all data
entries kK* with a given key value k.

Database Management Systems, R. Ramakrishnan

\ATIternatives for Data Entry k* in Index

0 Three alternatives:
[1 Data record with key value k
[1 <k, rid of data record with search key value k>
[1 <k, list of rids of data records with search key k>

0 Choice of alternative for data entries Is
orthogonal to the indexing technique used to
locate data entries with a given key value k.

— Examples of indexing techniques: B+ trees, hash-
based structures

— Typically, index contains auxiliary information that
directs searches to the desired data entries

Database Management Systems, R. Ramakrishnan

\Alternatives for Data Entries (Contd.)

0 Alternative 1:

— If this iIs used, index structure is a file organization
for data records (like Heap files or sorted files).

— At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records duplicated, leading to redundant storage
and potential inconsistency.)

— If data records very large, # of pages containing
data entries is high. Implies size of auxiliary
Information Iin the index is also large, typically.

Database Management Systems, R. Ramakrishnan

Alternatives for Data Entries (Contd.)

0 Alternatives 2 and 3:

— Data entries typically much smaller than data
records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search Is
much smaller than with Alternative 1.)

— If more than one index is required on a given file, at
most one index can use Alternative 1; rest must use
Alternatives 2 or 3.

— Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

Database Management Systems, R. Ramakrishnan

10

\Index Classification

0 Primary vs. secondary: If search key contains
primary key, then called primary index.

— Unique index: Search key contains a candidate key.

0 Clustered vs. unclustered: If order of data records
IS the same as, or close to’, order of data entries,
then called clustered index.

— Alternative 1 implies clustered, but not vice-versa.
— A file can be clustered on at most one search key.

— Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

Database Management Systems, R. Ramakrishnan 11

Clustered vs. Unclustered Index

0 S ose that Alternative (2) is used for data entries,
and that the data records are stored in a Heap file.

— To build clustered index, first sort the Heap file (with
some free space on each page for future inserts).

— Overflow pages may be needed for inserts. (Thus, order of
data recs is close to’, but not identical to, the sort order.)

CLUSTERV\ ér;%eé gggﬁiﬁ for N UNCLUSTERED
/ N\ / \

J— T = (ndex File) SR~ X

/4R NN oaafie) XN [Nl T I

Database Management Systems, R REMEKASInan D DEVEREERI S 12

= @ <>

Data entries Data entries

\Index Classification (Contd.)

0 Dense vs. Sparse: If
there is at least one data
entry per search key
value (in some data
record), then dense.

— Alternative 1 always
leads to dense index.

— Every sparse index Is
clustered!

— Sparse indexes are
smaller; however, some
useful optimizations are
based on dense indexes.

Database Management Systems, R. Ramakrishnan

Ashby

Cass

Smith AN

on
Name

N

Sparse Index

Ashby, 25, 3000

y

Basu, 33, 4003

Bristow, 30, 2007

Cass, 50, 5004

NI

Daniels, 22, 6003

Jones, 40, 6003

Smith, 44, 3000

Tracy, 44, 5004

Data File

22

25

30

TIT 71N

33

40

\

44

44

AN\

50

Dense Index
on
Age

13

Index Classification (Contd.)

0 Composite Search Keys: Search
on a combination of fields.
— Equality query: Every field
value is equal to a constant
value. E.g. wrt <sal,age> index:

0 age=20 and sal =75

— Range query: Some field value
IS not a constant. E.g.:

0 age =20; or age=20 and sal > 10
0 Data entries in index sorted
by search key to support
range queries.
— Lexicographic order, or

— Spatial order.
Database Management Systems, R. Ramakrishnan

Examples of composite key
indexes using lexicographic order.

11,80 / 11
12,10 12
12 20 \| name age sal 12
13,75 \ bob 12 10 13
<age, sal> cal 11 80 <age>
joe 12 20 -
10,12 sue 13 75 10
A N
20,12 ~ Data records N 20
75,13 v sorted by name . 75
80,11 80
<sal, age> <sal>

Data entries
sorted by <sal>

Data entries in index
sorted by <sal,age>

14

Summary
N\

0 Many alternative file organizations exist, each
appropriate in some situation.

0 If selection queries are frequent, sorting the
file or building an index Is Important.
— Hash-based indexes only good for equality search.

— Sorted files and tree-based indexes best for range
search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index Is better.)

0 Index Is a collection of data entries plus a way
to quickly find entries with given key values.

Database Management Systems, R. Ramakrishnan 15

\Summary (Contd.)

0 Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
— Choice orthogonal to indexing technique used to
locate data entries with a given key value.
0 Can have several indexes on a given file of
data records, each with a different search key.

0 Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility/performance.

Database Management Systems, R. Ramakrishnan 16

