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Implementation of Relational
Operations

Module 4, Lecture 1
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Relational Operations

❖ We will consider how to implement:
– Selection  (     )    Selects a subset of rows from relation.
– Projection  (     )   Deletes unwanted columns from relation.
– Join  (        )  Allows us to combine two relations.
– Set-difference  (     )  Tuples in reln. 1, but not in reln. 2.
– Union  (     )  Tuples in reln. 1 and in reln. 2.
– Aggregation  (SUM, MIN, etc.) and GROUP BY

❖ Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.
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Schema for Examples

❖ Similar to old schema; rname added for variations.
❖ Reserves:

– Each tuple is 40 bytes long,  100 tuples per page, 1000 pages.

❖ Sailors:
– Each tuple is 50 bytes long,  80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
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Equality Joins With One Join Column

❖ In algebra: R       S.  Common!  Must be carefully
optimized.  R      S is large; so, R     S followed by a
selection is inefficient.

❖ Assume: M pages in R, pR tuples per page, N pages in
S, pS tuples per page.
– In our examples, R is Reserves and S is Sailors.

❖ We will consider more complex join conditions later.
❖ Cost metric:  # of I/Os.  We will ignore output costs.

SELECT  *
FROM     Reserves R1, Sailors S1
WHERE  R1.sid=S1.sid
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Simple Nested Loops Join

❖ For each tuple in the outer relation R, we scan the
entire inner relation S.
– Cost:  M +  pR * M * N  =  1000 + 100*1000*500  I/Os.

❖ Page-oriented Nested Loops join:  For each page of R,
get each page of S, and write out matching pairs of
tuples <r, s>, where r is in R-page and S is in S-page.
– Cost:  M + M*N = 1000 + 1000*500
– If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj  then add <r, s> to result
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Index Nested Loops Join

❖ If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
– Cost:  M + ( (M*pR) * cost of finding matching S tuples)

❖ For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree.  Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.
– Clustered index:  1 I/O (typical), unclustered: upto 1 I/O

per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj  do

add <r, s> to result
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Examples of Index Nested Loops

❖ Hash-index (Alt. 2) on sid of Sailors (as inner):
– Scan Reserves:  1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple:  1.2 I/Os to get data entry in

index, plus 1 I/O to get (the exactly one) matching Sailors
tuple.  Total:  220,000 I/Os.

❖ Hash-index (Alt. 2) on sid of Reserves (as inner):
– Scan Sailors:  500 page I/Os, 80*500 tuples.
– For each Sailors tuple:  1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples.  Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000).  Cost of retrieving them  is 1 or
2.5 I/Os depending on whether the index is clustered.
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Block Nested Loops Join

❖ Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add

<r, s> to result.  Then read next R-block, scan S, etc.
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Examples of Block Nested Loops
❖ Cost:  Scan of outer +  #outer blocks * scan of inner

– #outer blocks =

❖ With Reserves (R) as outer, and 100 pages of R:
– Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
– Per block of R, we scan Sailors (S);  10*500 I/Os.
– If space for just 90 pages of R, we would scan S 12 times.

❖ With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves;   5*1000 I/Os.

❖ With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.

 # /of pages of outer blocksize
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Sort-Merge Join  (R     S)

❖ Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match;  output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.

❖ R is scanned once; each S group is scanned once per
matching R tuple.  (Multiple scans of an S group are
likely to find needed pages in buffer.)
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Example of Sort-Merge Join

❖ Cost:  M log M + N log N + (M+N)
– The cost of scanning, M+N, could be M*N (very unlikely!)

❖ With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost:  2500 to 15000 I/Os)
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Refinement of Sort-Merge Join
❖ We can combine the merging phases in the sorting of

R and S with the merging required for the join.
– With B >       , where L is the size of the larger relation, using

the sorting refinement that produces runs of length 2B in
Pass 0, #runs of each relation is < B/2.

– Allocate 1 page per run of each relation, and `merge’ while
checking the join condition.

– Cost:  read+write each relation in Pass 0 + read each relation
in (only) merging pass  (+ writing of result tuples).

– In example, cost goes down from 7500 to 4500 I/Os.

❖ In practice, cost of sort-merge join, like the cost of
external sorting, is linear.

L
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Hash-Join
❖ Partition both

relations using hash
fn h:  R tuples in
partition i will only
match S tuples in
partition i.

❖ Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.
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Observations on Hash-Join

❖ #partitions k < B-1 (why?), and B-2 > size of largest
partition to be held in memory.  Assuming uniformly
sized partitions, and maximizing k, we get:
– k= B-1,  and M/(B-1) < B-2,  i.e.,  B must be >

❖ If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

❖ If the hash function does not partition uniformly, one
or more R partitions may not fit in memory.  Can
apply hash-join technique recursively to do the join
of this R-partition with corresponding S-partition.

M
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Cost of Hash-Join

❖ In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

❖ In our running example, this is a total of 4500 I/Os.
❖ Sort-Merge Join vs. Hash Join:

– Given a minimum amount of memory (what is this, for each?)
both have a cost of 3(M+N) I/Os.  Hash Join superior on
this count if relation sizes differ greatly.  Also, Hash Join
shown to be highly parallelizable.

– Sort-Merge less sensitive to data skew; result is sorted.
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General Join Conditions
❖ Equalities over several attributes (e.g.,  R.sid=S.sid

AND R.rname=S.sname):
– For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
– For Sort-Merge and Hash Join, sort/partition on

combination of the two join columns.

❖ Inequality conditions (e.g.,  R.rname < S.sname):
– For Index NL, need (clustered!) B+ tree index.

◆ Range probes on inner; # matches likely to be much higher than for
equality joins.

– Hash Join, Sort Merge Join not applicable.
– Block NL quite likely to be the best join method here.


