
Database Management Systems, R. Ramakrishnan 1

Implementation of Relational
Operations

Module 4, Lecture 1

Database Management Systems, R. Ramakrishnan 2

Relational Operations

❖ We will consider how to implement:
– Selection () Selects a subset of rows from relation.
– Projection () Deletes unwanted columns from relation.
– Join () Allows us to combine two relations.
– Set-difference () Tuples in reln. 1, but not in reln. 2.
– Union () Tuples in reln. 1 and in reln. 2.
– Aggregation (SUM, MIN, etc.) and GROUP BY

❖ Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.

σ
π

−
U

><

Database Management Systems, R. Ramakrishnan 3

Schema for Examples

❖ Similar to old schema; rname added for variations.
❖ Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

❖ Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems, R. Ramakrishnan 4

Equality Joins With One Join Column

❖ In algebra: R S. Common! Must be carefully
optimized. R S is large; so, R S followed by a
selection is inefficient.

❖ Assume: M pages in R, pR tuples per page, N pages in
S, pS tuples per page.
– In our examples, R is Reserves and S is Sailors.

❖ We will consider more complex join conditions later.
❖ Cost metric: # of I/Os. We will ignore output costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

><

× ×

Database Management Systems, R. Ramakrishnan 5

Simple Nested Loops Join

❖ For each tuple in the outer relation R, we scan the
entire inner relation S.
– Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.

❖ Page-oriented Nested Loops join: For each page of R,
get each page of S, and write out matching pairs of
tuples <r, s>, where r is in R-page and S is in S-page.
– Cost: M + M*N = 1000 + 1000*500
– If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Database Management Systems, R. Ramakrishnan 6

Index Nested Loops Join

❖ If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
– Cost: M + ((M*pR) * cost of finding matching S tuples)

❖ For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.
– Clustered index: 1 I/O (typical), unclustered: upto 1 I/O

per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems, R. Ramakrishnan 7

Examples of Index Nested Loops

❖ Hash-index (Alt. 2) on sid of Sailors (as inner):
– Scan Reserves: 1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple: 1.2 I/Os to get data entry in

index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

❖ Hash-index (Alt. 2) on sid of Reserves (as inner):
– Scan Sailors: 500 page I/Os, 80*500 tuples.
– For each Sailors tuple: 1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Database Management Systems, R. Ramakrishnan 8

Block Nested Loops Join

❖ Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

. . .

Join Result

Database Management Systems, R. Ramakrishnan 9

Examples of Block Nested Loops
❖ Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks =

❖ With Reserves (R) as outer, and 100 pages of R:
– Cost of scanning R is 1000 I/Os; a total of 10 blocks.
– Per block of R, we scan Sailors (S); 10*500 I/Os.
– If space for just 90 pages of R, we would scan S 12 times.

❖ With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves; 5*1000 I/Os.

❖ With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.

 # /of pages of outer blocksize

Database Management Systems, R. Ramakrishnan 10

Sort-Merge Join (R S)

❖ Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.

❖ R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

><
i=j

Database Management Systems, R. Ramakrishnan 11

Example of Sort-Merge Join

❖ Cost: M log M + N log N + (M+N)
– The cost of scanning, M+N, could be M*N (very unlikely!)

❖ With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost: 2500 to 15000 I/Os)

Database Management Systems, R. Ramakrishnan 12

Refinement of Sort-Merge Join
❖ We can combine the merging phases in the sorting of

R and S with the merging required for the join.
– With B > , where L is the size of the larger relation, using

the sorting refinement that produces runs of length 2B in
Pass 0, #runs of each relation is < B/2.

– Allocate 1 page per run of each relation, and `merge’ while
checking the join condition.

– Cost: read+write each relation in Pass 0 + read each relation
in (only) merging pass (+ writing of result tuples).

– In example, cost goes down from 7500 to 4500 I/Os.

❖ In practice, cost of sort-merge join, like the cost of
external sorting, is linear.

L

Database Management Systems, R. Ramakrishnan 13

Hash-Join
❖ Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

❖ Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Database Management Systems, R. Ramakrishnan 14

Observations on Hash-Join

❖ #partitions k < B-1 (why?), and B-2 > size of largest
partition to be held in memory. Assuming uniformly
sized partitions, and maximizing k, we get:
– k= B-1, and M/(B-1) < B-2, i.e., B must be >

❖ If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

❖ If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can
apply hash-join technique recursively to do the join
of this R-partition with corresponding S-partition.

M

Database Management Systems, R. Ramakrishnan 15

Cost of Hash-Join

❖ In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

❖ In our running example, this is a total of 4500 I/Os.
❖ Sort-Merge Join vs. Hash Join:

– Given a minimum amount of memory (what is this, for each?)
both have a cost of 3(M+N) I/Os. Hash Join superior on
this count if relation sizes differ greatly. Also, Hash Join
shown to be highly parallelizable.

– Sort-Merge less sensitive to data skew; result is sorted.

Database Management Systems, R. Ramakrishnan 16

General Join Conditions
❖ Equalities over several attributes (e.g., R.sid=S.sid

AND R.rname=S.sname):
– For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
– For Sort-Merge and Hash Join, sort/partition on

combination of the two join columns.

❖ Inequality conditions (e.g., R.rname < S.sname):
– For Index NL, need (clustered!) B+ tree index.

◆ Range probes on inner; # matches likely to be much higher than for
equality joins.

– Hash Join, Sort Merge Join not applicable.
– Block NL quite likely to be the best join method here.

