
Database Management Systems 1

Concurrency Control

Module 6, Lectures 1 and 2

The controlling intelligence understands its own nature,

and what it does, and whereon it works.

 -- Marcus Aurelius Antoninus, 121-180 A. D.

Database Management Systems 2

Why Have Concurrent Processes?

❖ Better transaction throughput, response time
❖ Done via better utilization of resources:

– While one processes is doing a disk read, another can
be using the CPU or reading another disk.

❖❖ DANGER DANGER!DANGER DANGER! Concurrency could lead
to incorrectness!
– Must carefully manage concurrent data access.
– There’s (much!) more here than the usual OS tricks!

Database Management Systems 3

Transactions

❖ Basic concurrency/recovery concept: a
transaction (Xact).
– A sequence of many actions which are

considered to be one atomic unit of work.

❖ DBMS “actions”:
– reads, writes
– Special actions: commit, abort
– for now, assume reads and writes are on tuples;

we’ll revisit this assumption later.

Database Management Systems 4

The ACIDACID Properties

❖❖ AA tomicity: All actions in the Xact happen, or none
happen.

❖❖ CC onsistency: If each Xact is consistent, and the DB
starts consistent, it ends up consistent.

❖❖ II solation: Execution of one Xact is isolated from that
of other Xacts.

❖❖ DDurability: If a Xact commits, its effects persist.

Database Management Systems 5

Passing the ACID Test

❖ Concurrency Control
– Guarantees Consistency and Isolation, given

Atomicity.

❖ Logging and Recovery
– Guarantees Atomicity and Durability.

❖ We’ll do C. C. today:
– What problems could arise?
– What is acceptable behavior?
– How do we guarantee acceptable behavior?

Database Management Systems 6

Schedules

❖ Schedule: An interleaving of actions
from a set of Xacts, where the actions
of any 1 Xact are in the original order.
– Represents some actual sequence of

database actions.
– Example: R1(A), W1(A), R2(B), W2(B),

R1(C), W1(C)
– In a complete schedule, each Xact ends in

commit or abort.

❖ Initial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)

Database Management Systems 7

Acceptable Schedules

❖ One sensible “isolated, consistent” schedule:
– Run Xacts one at a time, in a series.
– This is called a serial schedule.
– NOTE: Different serial schedules can have different

final states; all are “OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

❖ Serializable schedules:
– Final state is what some serial schedule would have

produced.
– Aborted Xacts are not part of schedule; ignore them for

now (they are made to `disappear’ by using logging).

Database Management Systems 8

Serializability Violations

❖ Two actions conflict when 2
xacts access the same item:
– W-R conflict: T2 reads something

T1 wrote.
– R-W and W-W conflicts:

Similar.

❖ WR conflict (dirty read):
– Result is not equal to any serial

execution!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!

Database Management Systems 9

More Conflicts

❖ RW Conflicts (Unrepeatable Read)
– T2 overwrites what T1 read.
– If T1 reads it again, it will see something new!

◆ Example when this would happen?
◆ The increment/decrement example.

– Again, not equivalent to a serial execution.

❖ WW Conflicts (Overwriting Uncommited Data)
– T2 overwrites what T1 wrote.

◆ Example: 2 Xacts to update items to be kept equal.

– Usually occurs in conjunction w/other anomalies.
◆ Unless you have “blind writes”.

Database Management Systems 10

Now, Aborted Transactions

❖ Serializable schedule: Equivalent to a serial
schedule of committed Xacts.
– as if aborted Xacts never happened.

❖ Two Issues:
– How does one undo the effects of an xact?

◆ We’ll cover this in logging/recovery
– What if another Xact sees these effects??

◆ Must undo that Xact as well!

Database Management Systems 11

Cascading Aborts

❖ Abort of T1 requires abort of T2!
– Cascading Abort

❖ What about WW conflicts & aborts?
– T2 overwrites a value that T1 writes.
– T1 aborts: its “remembered” values are restored.
– Lose T2’s write! We will see how to solve this, too.

❖ An ACA (avoids cascading abort)
schedule is one in which cascading abort cannot
arise.
– A Xact only reads/writes data from committed Xacts.

❖

T1 T2

R(A)

W(A)

R(A)

W(A)

abort

Database Management Systems 12

Recoverable Schedules

❖ Abort of T1 requires abort of T2!
– But T2 has already committed!

❖ A recoverable schedule is one in
 which this cannot happen.

– i.e. a Xact commits only after all the Xacts it “depends
on” (i.e. it reads from or overwrites) commit.

– Recoverable implies ACA (but not vice-versa!).

❖ Real systems typically ensure that only
recoverable schedules arise (through locking).

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort

Database Management Systems 13

Locking: A Technique for C. C.

❖ Concurrency control usually done via locking.
❖ Lock info maintained by a “lock manager”:

– Stores (XID, RID, Mode) triples.
◆ This is a simplistic view; suffices for now.

– Mode ∈ {S,X}
– Lock compatibility table:

❖ If a Xact can’t get a lock, it is
 suspended on a wait queue.

-- S X

--

S

X

√

√

√

√ √

√

Database Management Systems 14

Two-Phase Locking (2PL)

❖ 2PL:
– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– If T releases any lock, it can acquire no new locks!

❖ Locks are automatically obtained by DBMS.
❖ Guarantees serializability!

– Why?

Time

of
locks

lock point

growing phase

shrinking
 phase

Database Management Systems 15

Strict 2PL

❖ Strict 2PL:
– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– Hold all locks until end of transaction.

❖ Guarantees serializability, and recoverable
schedule, too!
– also avoids WW problems!

Time

of
locks

Database Management Systems 16

Precedence Graph

❖ A Precedence (or Serializability) graph:
– Node for each commited Xact.
– Arc from Ti to Tj if an action of Ti precedes and

conflicts with an action of Tj.

❖ T1 transfers $100 from A to B, T2 adds 6%
– R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B),

W1(B)

T1 T2

Database Management Systems 17

Conflict Serializability

❖ 2 schedules are conflict equivalent if:
– they have the same sets of actions, and
– each pair of conflicting actions is ordered in the

same way.

❖ A schedule is conflict serializable if it is
conflict equivalent to a serial schedule.
– Note: Some serializable schedules are not conflict

serializable!

Database Management Systems 18

Conflict Serializability & Graphs

❖ Theorem: A schedule is conflict serializable iff
its precedence graph is acyclic.

❖ Theorem: 2PL ensures that the precedence
graph will be acyclic!

❖ Strict 2PL improves on this by avoiding
cascading aborts, problems with undoing WW
conflicts; i.e., ensuring recoverable schedules.

Database Management Systems 19

Lock Manager Implementation

❖ Question 1: What are we locking?
– Tuples, pages, or tables?
– Finer granularity increases concurrency, but also

increases locking overhead.

❖ Question 2: How do you “lock” something??
❖ Lock Table: A hash table of Lock Entries.

– Lock Entry:
◆ OID
◆ Mode
◆ List: Xacts holding lock
◆ List: Wait Queue

Database Management Systems 20

Handling a Lock Request

Lock Request (XID, OID, Mode)

Currently Locked?

Grant Lock

Empty Wait Queue?

Currently X-locked?

Mode==X Mode==S

No

Yes
No

Yes

Put on Queue

Yes

No

Database Management Systems 21

More Lock Manager Logic

❖ On lock release (OID, XID):
– Update list of Xacts holding lock.
– Examine head of wait queue.
– If Xact there can run, add it to list of Xacts holding

lock (change mode as needed).
– Repeat until head of wait queue cannot be run.

❖ Note: Lock request handled atomically!
– via latches (i.e. semaphores/mutex; OS stuff).

Database Management Systems 22

Lock Upgrades

❖ Think about this scenario:
– T1 locks A in S mode, T2 requests X lock on A, T3

requests S lock on A. What should we do?

❖ In contrast:
– T1 locks A in S mode, T2 requests X lock on A, T1

requests X lock on A. What should we do?

❖ Allow such upgrades to supersede lock requests.
– Consider this scenario:

◆ S1(A), X2(A), X1(A): DEADLOCK!

❖ BTW: Deadlock can occur even w/o upgrades:
– X1(A), X2(B), S1(B), S2(A)

Database Management Systems 23

Deadlock Prevention

❖ Assign a timestamp to each Xact as it enters
the system. “Older” Xacts have priority.

❖ Assume Ti requests a lock, but Tj holds a
conflicting lock.
– Wait-Die: If Ti has higher priority, it waits; else Ti

aborts.
– Wound-Wait: If Ti has higher priority, abort Tj;

else Ti waits.
– Note: After abort, restart with original timestamp!
– Both guarantee deadlock-free behavior! Pros and

cons of each?

X1(A), X2(B), S1(B), S2(A)

Database Management Systems 24

An Alternative to Prevention

❖ In theory, deadlock can involve many
transactions:
– T1 waits-for T2 waits-for T3 ...waits-for T1

❖ In practice, most “deadlock cycles” involve
only 2 transactions.

❖ Don’t need to prevent deadlock!
– What’s the problem with prevention?

❖ Allow it to happen, then notice it and fix it.
– Deadlock detection.

Database Management Systems 25

Deadlock Detection
❖ Lock Mgr maintains a “Waits-for” graph:

– Node for each Xact.
– Arc from Ti to Tj if Tj holds a lock and Ti is

waiting for it.

❖ Periodically check graph for cycles.
❖ “Shoot” some Xact to break the cycle.
❖ Simpler hack: time-outs.

– T1 made no progress for a while? Shoot it.

To lock such rascal counters from his friends,

Be ready, gods, with all your thunderbolts:

Dash him to pieces!

-- Shakespeare, Julius Caesar

Database Management Systems 26

Prevention vs. Detection

❖ Prevention might abort too many Xacts.
❖ Detection might allow deadlocks to tie up

resources for a while.
– Can detect more often, but it’s time-consuming.

❖ The usual answer:
– Detection is the winner.
– Deadlocks are pretty rare.
– If you get a lot of deadlocks, reconsider your

schema/workload!

Database Management Systems 27

Multiple-Granularity Locks

❖ Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

❖ Shouldn’t have to decide!
❖ Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Database Management Systems 28

Solution: New Lock Modes, Protocol

❖ Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

❖ Before locking an item, Xact
must set “intention locks”
on all its ancestors.

❖ For unlock, go from specific
to general (i.e., bottom-up).

❖ SIX mode: Like S & IX at
the same time.

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√
√

S

X

√ √

√

√

√

√ √

√

Database Management Systems 29

Examples

❖ T1 scans R, and updates a few tuples:
– T1 gets an SIX lock on R, then repeatedly gets an S

lock on tuples of R, and occasionally upgrades to
X on the tuples.

❖ T2 uses an index to read only part of R:
– T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R.

❖ T3 reads all of R:
– T3 gets an S lock on R.
– OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√
√

S

X

√ √

√

√

√

√ √

√

Database Management Systems 30

Summary of C.C.

❖ Concurrency control key to a DBMS.
– More than just mutexes!

❖ Transactions and the ACID properties:
– C & I are handled by concurrency control.
– A & D coming soon with logging & recovery.

❖ Conflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

❖ Serial execution is our model of correctness.

Database Management Systems 31

Summary, cont.

❖ Serializability allows us to “simulate” serial
execution with better performance.

❖ 2PL: A simple mechanism to get serializability.
– Strict 2PL also gives us recoverability.

❖ Lock manager module automates 2PL so that
only the access methods worry about it.
– Lock table is a big main-mem hash table

❖ Deadlocks are possible, and typically a
deadlock detector is used to solve the problem.

