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Introduction to Database Systems

Module 1, Lecture 1

Instructor: Raghu Ramakrishnan
raghu@cs.wisc.edu

UW-Madison
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What Is a DBMS?

❖ A very large, integrated collection of data.
❖ Models real-world enterprise.

–  Entities (e.g., students, courses)
–  Relationships (e.g., Madonna is taking CS564)

❖ A Database Management System (DBMS) is a
software package designed to store and
manage databases.
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Why Use a DBMS?

❖ Data independence and efficient access.
❖ Reduced application development time.
❖ Data integrity and security.
❖ Uniform data administration.
❖ Concurrent access, recovery from crashes.
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Why Study Databases??

❖ Shift from computation to information
– at the “low end”: scramble to webspace (a mess!)
– at the “high end”: scientific applications

❖ Datasets increasing in diversity and volume.
– Digital libraries, interactive video, Human

Genome project, EOS project
– ...  need for DBMS exploding

❖ DBMS encompasses most of CS
– OS, languages, theory, “A”I,  multimedia, logic

?
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Data Models
❖ A data model  is a collection of concepts for

describing data.
❖ A schema is a description of a particular

collection of data, using the a given data
model.

❖ The relational model of data is the most widely
used model today.
– Main concept:  relation, basically a table with rows

and columns.
– Every relation has a schema, which describes the

columns, or fields.
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Levels of Abstraction

❖ Many views, single
conceptual (logical) schema
and physical schema.
– Views describe how users

see the data.
– Conceptual schema defines

logical structure
– Physical schema describes

the files and indexes used.

☛ Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3
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Example: University Database

❖ Conceptual schema:
–  Students(sid: string, name: string, login: string,

  age: integer, gpa:real)
–  Courses(cid: string, cname:string, credits:integer)
–  Enrolled(sid:string, cid:string, grade:string)

❖ Physical schema:
– Relations stored as unordered files.
– Index on first column of Students.

❖ External Schema (View):
– Course_info(cid:string,enrollment:integer)
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Data Independence

❖ Applications insulated from how data is
structured and stored.

❖ Logical data independence:  Protection from
changes in logical structure of data.

❖ Physical data independence:   Protection from
changes in physical structure of data.

☛ One of the most important benefits of using a DBMS!
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Concurrency Control

❖ Concurrent execution of user programs
is essential for good DBMS performance.
– Because disk accesses are frequent, and relatively

slow, it is important to keep the cpu humming by
working on several user programs concurrently.

❖ Interleaving actions of different user programs
can lead to inconsistency: e.g., check is cleared
while account balance is being computed.

❖ DBMS ensures such problems don’t arise:  users
can pretend they are using a single-user system.
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Transaction: An Execution of a DB Program
❖ Key concept is transaction, which is an atomic

sequence of database actions (reads/writes).
❖ Each transaction, executed completely, must

leave the DB in a consistent state if DB is
consistent when the transaction begins.
– Users can specify some simple integrity constraints on

the data, and the DBMS will enforce these constraints.
– Beyond this, the DBMS does not really understand the

semantics of the data.  (e.g., it does not understand
how the interest on a bank account is computed).

– Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!
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Scheduling Concurrent Transactions

❖ DBMS ensures that execution of {T1, ... , Tn} is
equivalent to some serial execution T1’ ... Tn’.
– Before reading/writing an object, a transaction requests

a lock on the object, and waits till the DBMS gives it the
lock.  All locks are released at the end of the transaction.
(Strict 2PL locking protocol.)

– Idea: If an action of Ti (say, writing X) affects Tj (which
perhaps reads X), one of them, say Ti, will obtain the
lock on X first and Tj is forced to wait until Ti completes;
this effectively orders the transactions.

– What if Tj already has a lock on Y and Ti later requests a
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!
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Ensuring Atomicity

❖ DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a Xact.

❖ Idea: Keep a log (history) of all actions carried out
by the DBMS while executing a set of Xacts:
– Before a change is made to the database, the

corresponding log entry is forced to a safe location.
(WAL protocol; OS support for this is often inadequate.)

– After a crash, the effects of partially executed
transactions are undone using the log. (Thanks to WAL, if
log entry wasn’t saved before the crash, corresponding
change was not applied to database!)
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The Log

❖ The following actions are recorded in the log:
– Ti writes an object:  the old value and the new value.

◆ Log record must go to disk before the changed page!

– Ti commits/aborts:  a log record indicating this action.

❖ Log records chained together by Xact id, so it’s easy to
undo a specific Xact (e.g., to resolve a deadlock).

❖ Log is often duplexed and archived on “stable” storage.
❖ All log related activities (and in fact, all CC related

activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.
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Databases make these folks happy ...

❖ End users and DBMS vendors
❖ DB application programmers

– E.g. smart webmasters

❖ Database administrator (DBA)
– Designs logical /physical schemas
– Handles security and authorization
– Data availability, crash recovery
– Database tuning as needs evolve

Must understand how a DBMS works!
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Structure of a DBMS

❖ A typical DBMS has a
layered architecture.

❖ The figure does not
show the concurrency
control and recovery
components.

❖ This is one of several
possible architectures;
each system has its own
variations.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery
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Summary
❖ DBMS used to maintain, query large datasets.
❖ Benefits include recovery from system crashes,

concurrent access, quick application
development, data integrity and security.

❖ Levels of abstraction give data independence.
❖ A DBMS typically has a layered architecture.
❖ DBAs hold responsible jobs

and are well-paid!
❖ DBMS R&D is one of the broadest,

most exciting areas in CS.


