

Introduction to Query Optimization

Chapter 13

Database Management Systems, R. Ramakrishnan and J. Gehrke

Overview of Query Optimization

- ❖ <u>Plan:</u> Tree of R.A. ops, with choice of alg for each op.
 - Each operator typically implemented using a 'pull' interface: when an operator is 'pulled' for the next output tuples, it 'pulls' on its inputs and computes them.
- * Two main issues:
 - For a given query, what plans are considered?
 - Algorithm to search plan space for cheapest (estimated) plan.
 - How is the cost of a plan estimated?
- Ideally: Want to find best plan. Practically: Avoid worst plans!
- ❖ We will study the System R approach.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Highlights of System R Optimizer

- ❖ Impact:
 - Most widely used currently; works well for < 10 joins.
- * Cost estimation: Approximate art at best.
 - Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes.
 - Considers combination of CPU and I/O costs.
- * Plan Space: Too large, must be pruned.
 - Only the space of ${\it left-deep~plans}$ is considered.
 - Left-deep plans allow output of each operator to be <u>pipelined</u> into the next operator without storing it in a temporary relation.
 - Cartesian products avoided.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Schema for Examples

Sailors (<u>sid: integer</u>, sname: string, rating: integer, age: real) Reserves (<u>sid: integer</u>, bid: integer, day: dates, rname: string)

- Similar to old schema; rname added for variations.
- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Database Management Systems, R. Ramakrishnan and J. Gehrke

RA Tree: Motivating Example SELECT S.sname FROM Reserves R, Sailors S WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5 Reserves ♦ Cost: 500+500*1000 I/Os By no means the worst plan! Plan: Misses several opportunities: selections could have been (On-the-fly) `pushed' earlier, no use is made of any available indexes, etc. (Simple Nested Loops) . Goal of optimization: To find more efficient plans that compute the same answer Sailors Reserves Database Management Systems, R. Rama krishnan and J. Gehrke

- Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
- Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
- Total: 3560 page I/Os.
- If we used BNL join, join cost = 10+4*250, total cost = 2770.
- If we 'push' projections, T1 has only sid, T2 only sid and sname:
 - T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Alternative Plans 2 With Indexes

- With clustered index on bid of Reserves, we get 100,000/100 = 1000 tuples on 1000/100 = 10 pages.
- INL with <u>pipelining</u> (outer is not materialized).
 - r is not result to temp) Reserves
 - -Projecting out unnecessary fields from outer doesn't help
- Join column sid is a key for Sailors.
 - -At most one matching tuple, unclustered index on sid OK.
- Decision not to push nating>5 before the join is based on availability of sid index on Sailors.
- Cost: Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Cost Estimation

- * For each plan considered, must estimate cost:
- Must estimate *cost* of each operation in plan tree.
 - · Depends on input cardinalities
 - We've already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
- Must estimate size of result for each operation in tree!
 - Use information about the input relations.
 - For selections and joins, assume independence of predicates.
- ❖ We'll discuss the System R cost estimation approach.
 - Very inexact, but works ok in practice.
 - More sophisticated techniques known now.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Statistics and Catalogs

- Need information about the relations and indexes involved. Catalogs typically contain at least:
 - # tuples (NTuples) and # pages (NPages) for each relation.
 - # distinct key values (NKeys) and NPages for each index.
 - Index height, low/high key values (Low/High) for each tree index.
- * Catalogs updated periodically.
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.
- More detailed information (e.g., histograms of the values in some field) are sometimes stored.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Size Estimation and Reduction Factors

SELECT attribute list FROM relation list

♦ Consider a query block: WHERE term1 AND ... AND termk

- Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause.
- Reduction factor (RF) associated with each term reflects the impact of the term in reducing result size. Result cardinality = Max # tuples * product of all RF's.
 - Implicit assumption that *terms* are independent!
 - Term col=value has RF 1/NKeys(I), given index I on col
 - Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
 - $\ \, \operatorname{Term} \ col{>} value \ has \ RF \ (High(I){-}value)/(High(I){-}Low(I))$

Database Management Systems, R. Ramakrishnan and J. Gehrke

Summary

- Query optimization is an important task in a relational DBMS.
- Must understand optimization in order to understand the performance impact of a given database design (relations, indexes) on a workload (set of queries).
- Two parts to optimizing a query:
 - Consider a set of alternative plans.
 - \bullet Must prune search space; typically, left-deep plans only.
 - Must estimate cost of each plan that is considered.
 - Must estimate size of result and cost for each plan node.
 Key issues: Statistics, indexes, operator implementations.

Database Management Systems, R. Ramakrishnan and J. Gehrke

11