
1

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 1

Decision Support

Chapter 23

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 2

Introduction

❖ Increasingly, organizations are analyzing 
current and historical data to identify useful 
patterns and support business strategies.

❖ Emphasis is on complex, interactive, 
exploratory analysis of very large datasets 
created by integrating data from across all 
parts of an enterprise; data is fairly static.
– Contrast such On-Line Analytic Processing 

(OLAP) with traditional On-line Transaction 
Processing (OLTP): mostly long queries, instead 
of short update Xacts.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 3

Three Complementary Trends

❖ Data Warehousing: Consolidate data from many 
sources in one large repository.
– Loading, periodic synchronization of replicas.
– Semantic integration.

❖ OLAP:
– Complex SQL queries and views. 
– Queries based on spreadsheet-style operations and 

“multidimensional” view of data.
– Interactive and “online” queries.

❖ Data Mining:  Exploratory search for interesting 
trends and anomalies. (Another lecture!)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 4

Data Warehousing

❖ Integrated data spanning 
long time periods, often 
augmented with summary 
information. 

❖ Several gigabytes to 
terabytes common.

❖ Interactive response      
times expected for     
complex queries; ad-hoc 
updates uncommon.

EXTERNAL DATA SOURCES

EXTRACT
TRANSFORM

LOAD
REFRESH

DATA
WAREHOUSEMetadata

Repository

SUPPORTS

OLAPDATA
MINING

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 5

Warehousing Issues
❖ Semantic Integration: When getting data from 

multiple sources, must eliminate mismatches, 
e.g., different currencies, schemas.

❖ Heterogeneous Sources: Must access data from 
a variety of source formats and repositories.
– Replication capabilities can be exploited here.

❖ Load, Refresh, Purge: Must load data, 
periodically refresh it, and purge too-old data.

❖ Metadata Management: Must keep track of 
source, loading time, and other information for 
all data in the warehouse.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 6

Multidimensional 
Data Model

❖ Collection of numeric measures,
which depend on a set of dimensions.
– E.g., measure Sales, dimensions     

Product (key: pid), Location (locid),      
and Time (timeid).

8     10    10

30    20    50

25     8     15

1      2      3
timeid

p
id

11
   

 1
2 

   
13

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

p
id ti
m

ei
d

lo
ci

d

sa
le

s

locid

Slice locid=1
is shown:



2

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 7

MOLAP vs ROLAP

❖ Multidimensional data can be stored physically 
in a (disk-resident, persistent) array; called 
MOLAP systems.  Alternatively, can store as a 
relation; called ROLAP systems.

❖ The main relation, which relates dimensions to 
a measure, is called the fact table.  Each 
dimension can have additional attributes and 
an associated dimension table.
– E.g., Products(pid, pname, category, price)
– Fact tables are much larger than dimensional tables.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 8

Dimension Hierarchies

❖ For each dimension, the set of values can be 
organized in a hierarchy:

PRODUCT TIME LOCATION

category           week          month                  state

pname date                                city

year

quarter                          country

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 9

OLAP Queries

❖ Influenced by SQL and by spreadsheets.
❖ A common operation is to aggregate a 

measure over one or more dimensions.
– Find total sales.
– Find total sales for each city, or for each state.
– Find top five products ranked by total sales.

❖ Roll-up: Aggregating at different levels of  a 
dimension hierarchy.  
– E.g., Given total sales by city, we can roll-up to get 

sales by state.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 10

OLAP Queries
❖ Drill-down: The inverse of roll-up.  

– E.g., Given total sales by state, can drill-down to get 
total sales by city.

– E.g., Can also drill-down on different dimension to 
get total sales by product for each state.

❖ Pivoting: Aggregation on selected dimensions.
– E.g., Pivoting on Location and Time                    

yields this cross-tabulation: 63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total

❖ Slicing and Dicing: Equality
and range selections on one
or more dimensions.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 11

Comparison with SQL Queries

❖ The cross-tabulation obtained by pivoting can also 
be computed using a collection of SQLqueries:

SELECT SUM(S.sales)
FROM  Sales S, Times T, Locations L
WHERE  S.timeid=T.timeid AND S.timeid=L.timeid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM  Sales S, Times T
WHERE  S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM  Sales S, Location L
WHERE  S.timeid=L.timeid
GROUP BY L.state

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 12

The CUBE Operator

❖ Generalizing the previous example, if there 
are k dimensions, we have 2^k possible SQL 
GROUP BY queries that can be generated 
through pivoting on a subset of dimensions.

❖ CUBE pid, locid, timeid BY SUM Sales
– Equivalent to rolling up Sales on all eight subsets 

of the set {pid, locid, timeid}; each roll-up 
corresponds to an SQL query of the form:

SELECT SUM(S.sales)
FROM  Sales S
GROUP BY grouping-list

Lots of recent work on
optimizing the CUBE operator!



3

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 13

Design Issues

❖ Fact table in BCNF; dimension tables not 
normalized.
– Dimension tables are small; updates/inserts/deletes 

are rare. So, anomalies less important than good query 
performance.

❖ This kind of schema is very common in OLAP 
applications, and is called a star schema; 
computing the join of all these relations is called 

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_fla
g

weekdat
e

timei
d

mont
h

quarte
r

year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 14

Implementation Issues
❖ New indexing techniques:  Bitmap indexes, Join 

indexes, array representations, compression,
precomputation of aggregations, etc.

❖ E.g., Bitmap index:

10
10
01
10

112 Joe M 3
115 Ram M 5

119 Sue F 5

112 Woo M 4

00100
00001
00001
00010

sex custid name sex rating      ratingBit-vector:
1 bit for each
possible value.
Many queries can
be answered using
bit-vector ops!

M
F

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 15

Join Indexes
❖ Consider the join of Sales, Products, Times, and 

Locations, possibly with additional selection 
conditions (e.g., country=“USA”).
– A join index can be constructed to speed up such joins. 

The index contains [s,p,t,l] if there are tuples (with sid) 
s in Sales, p in Products, t in Times and l in Locations 
that satisfy the join (and selection) conditions.

❖ Problem: Number of join indexes can grow 
rapidly.
– A variant of the idea addresses this problem: For each 

column with an additional selection (e.g., country), 
build an index with [c,s] in it if a dimension table
tuple with value c in the selection column joins with a 
Sales tuple with sid s; if indexes are bitmaps, called Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 16

Bitmapped Join Index

❖ Consider a query with conditions price=10 and 
country=“USA”.  Suppose tuple (with sid) s in Sales 
joins with a tuple p with price=10 and a tuple l with 
country =“USA”.  There are two join indexes; one 
containing [10,s] and the other [USA,s].

❖ Intersecting these indexes tells us which tuples in 
Sales are in the join and satisfy the given selection.

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_fla
g

weekdat
e

timei
d

mont
h

quarte
r

year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 17

Views and Decision Support

❖ OLAP queries are typically aggregate queries.
– Precomputation is essential for interactive response 

times.
– The CUBE is in fact a collection of aggregate queries, 

and precomputation is especially important: lots of 
work on what is best to precompute given a limited 
amount of space to store precomputed results.

❖ Warehouses can be thought of as a collection of 
asynchronously replicated tables and 
periodically maintained views.
– Has renewed interest in view maintenance!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 18

View Modification (Evaluate On Demand)
CREATE VIEW RegionalSales(category,sales,state)

AS SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L

WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category, R.state, SUM(R.sales)
FROM RegionalSales AS R GROUP BY R.category, R.state

SELECT R.category, R.state, SUM(R.sales)
FROM (SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid) AS R

GROUP BY R.category, R.state

View

Query

Modified
Query



4

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 19

View Materialization 
(Precomputation)

❖ Suppose we precompute RegionalSales and store 
it with a clustered B+ tree index on 
[category,state,sales].
– Then, previous query can be answered by an index-

only scan.
SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R.category=“Laptop”
GROUP BY R.state

SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R. state=“Wisconsin”
GROUP BY R.category

Index on precomputed view 
is great!

Index is less useful (must 
scan entire leaf level).

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 20

Issues in View Materialization

❖ What views should we materialize, and what 
indexes should we build on the precomputed 
results?

❖ Given a query and a set of materialized 
views, can we use the materialized views to 
answer the query?

❖ How frequently should we refresh 
materialized views to make them consistent 
with the underlying tables? (And how can we 
do this incrementally?)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 21

Interactive Queries: Beyond Materialization

❖ Top N Queries: If you want to find the 10 (or 
so) cheapest cars, it would be nice if the DB 
could avoid computing the costs of all cars 
before sorting to determine the 10 cheapest.
– Idea: Guess at a cost c such that the 10 cheapest all 

cost less than c, and that not too many more cost 
less.  Then add the selection cost<c and evaluate 
the query.

◆ If the guess is right, great, we avoid 
computation for cars that cost more than c.

◆ If the guess is wrong, need to reset the selection 
and recompute the original query.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 22

Top N Queries

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC
OPTIMIZE FOR 10 ROWS

❖ OPTIMIZE FOR construct is not in SQL:1999!
❖ Cut-off value c is chosen by optimizer.

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3 

AND S.sales > c
ORDER BY S.sales DESC

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 23

Interactive Queries: Beyond Materialization

❖ Online Aggregation: Consider an aggregate 
query, e.g., finding the average sales by state. 
Can we provide the user with some information 
before the exact average is computed for all 
states?
– Can show the current “running average” for each 

state as the computation proceeds.
– Even better, if we use statistical techniques and 

sample tuples to aggregate instead of simply 
scanning the aggregated table, we can provide 
bounds such as “the average for Wisconsin is 
2000±102 with 95% probability.

◆ Should also use nonblocking algorithms! Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 24

Summary
❖ Decision support is an emerging, rapidly 

growing subarea of databases.
❖ Involves the creation of large, consolidated 

data repositories called data warehouses.
❖ Warehouses exploited using sophisticated 

analysis techniques:  complex SQL queries 
and OLAP “multidimensional” queries 
(influenced by both SQL and spreadsheets).

❖ New techniques for database design, 
indexing, view maintenance, and interactive 
querying need to be supported.


