Relational Algebra

Chapter 4, Part A

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages for programming languages:
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

- **Relational Algebra**: More operational, very useful for representing execution plans
- **Relational Calculus**: Lets users describe what they want, rather than how to compute it. (Non-operational, declarative)
- Understanding Algebra & Calculus is key to understanding SQL query processing!

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the result of a given query is also fixed: Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL.

Example Instances

- “Sailors” and “Reserves” relations for our examples. R_1
- We’ll use positional or named field notation, assume that names of fields in query results are “inherited” from names of fields in query input relations.

<table>
<thead>
<tr>
<th>RI</th>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td></td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td></td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_2</th>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_3</th>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td></td>
</tr>
</tbody>
</table>

Relational Algebra

- Basic operations:
 - **Selecting (σ)**: Selects a subset of rows from relation.
 - **Projection (π)**: Removes unwanted columns from relation.
 - **Cross-product (X)**: Allows us to combine two relations.
 - **Set-difference (−)**: Tuples in reln. 1, but not in reln. 2.
 - **Union (∪)**: Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, union, division, renaming: Not essential, but (very!) useful.
 - Since each operation returns a relation, operations can be composed (Algebra is “closed”).
Projection
- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicate values. (Why?)
 - Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it. (Why not?)

\[\pi_{\text{name, rating}}(S2) \]

Selection
- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation (Operator composition.)

\[\sigma_{\text{rating} > 8}(S2) \]

Union, Intersection, Set-Difference
- All of these operations take two input relations, which must be union-compatible.
 - Same number of fields.
 - Corresponding fields have the same type.
- What is the schema of result?

\[S1 \cup S2 \]
\[S1 \setminus S2 \]

Cross-Product
- Each row of S1 is paired with each row of S1.
- Result schema has one field per field of S1 and S1, with field names ‘inherited’ if possible.
 - Conflict: Both S1 and S1 have a field called sid.

\[\rho(S1 \rightarrow \text{sid}, S \rightarrow \text{sid}, S1 \times S1) \]

Joins
- Condition Join: \(R \bowtie c S = \sigma_c (R \times S) \)

\[\pi_{\text{name, rating}}(S1 \times S2) \]

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently.
- Sometimes called a Theta-join.
Division

- Not supported as a primitive operator, but useful for expressing queries like:
 - Find sailors who have reserved all boats.
- Let A have 2 fields, x and y; B have only field y.
 - $A/B = \{ (x) \mid \exists (x, y) \in A \wedge y \in B \}$
 - i.e., A/B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.
- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Expressing A/B Using Basic Operators

- Division is not essential; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A/B, compute all x values that are not `disqualified` by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

 Disqualified x values: $\pi_x((\pi_x(A) \times B) \sim A) = A/B = \pi_x(A) - \text{all disqualified tuples}$

Find names of sailors who’ve reserved boat #103

- Solution 1: $\pi_{\text{name}}(\sigma_{\text{bid}=103}(\text{Reserves} < \text{Sailors}))$
- Solution 2: $\rho(\text{Temp1}, \sigma_{\text{bid}=103}(\text{Reserves}))$
 - $\rho(\text{Temp2}, \text{Temp1} < \text{Sailors})$
 - $\pi_{\text{name}}(\text{Temp2})$
- Solution 3: $\pi_{\text{name}}(\sigma_{\text{bid}=103}(\text{Reserves} < \text{Sailors}))$

Find names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
 - $\pi_{\text{name}}(\sigma_{\text{color}=\text{red}}(\text{Boats} < \text{Reserves} < \text{Sailors}))$
- A more efficient solution:
 - $\pi_{\text{name}}(\sigma_{\text{bid}}(\sigma_{\text{color}=\text{red}}(\text{Boats} < \text{Reserves} < \text{Sailors})))$
- A query optimizer can find this given the first solution!

Find sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:
 - $\rho(\text{Tempboats}, (\sigma_{\text{color}=\text{red}} \lor \text{color}=\text{green})(\text{Boats}))$
 - $\pi_{\text{name}}(\text{Tempboats} < \text{Reserves} < \text{Sailors})$
- Can also define Tempboats using union! (How?)
- What happens if \lor is replaced by \land in this query?
Find sailors who’ve reserved a red and a green boat

- Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):
 \[
 \rho (\text{Tempred}, \pi_{sid}(\sigma_{color=\text{red}} \text{Boats}) \bowtie \text{Reserves})
 \]
 \[
 \rho (\text{Tempgreen}, \pi_{sid}(\sigma_{color=\text{green}} \text{Boats}) \bowtie \text{Reserves})
 \]
 \[
 \pi_{\text{name}}((\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors})
 \]

Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:
 \[
 \rho (\text{Tempsids}, (\pi_{sid, bid} \text{Reserves}) / (\pi_{bid} \text{Boats}))
 \]
 \[
 \pi_{\text{name}}(\text{Tempsids} \bowtie \text{Sailors})
 \]
- To find sailors who’ve reserved all ‘Interlake’ boats:
 \[
 \pi_{\text{name}}((\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors})
 \]

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.