
CS412 Assignment 4 (as of 17oct00) Fall 2000
due date: 24 October 2000

STAPLE your homework. MARK your homework clearly with your NAME.
In addition, write the first letter of your LAST NAME boldly into the upper
left corner of the first page of your homework . For this to be of real help,
the vertical edge of the upper left corner should be longer than the horizontal
edge.

1. (10+10+5 points)
(a) Construct the cubic Hermite interpolant q to the function f(x) = sin(x) at the

points −π/2 and π/2 (i.e., the unique cubic polynomial that interpolates this function at
the sequence (x1, x2, x3, x4) := (−π/2,−π/2, π/2, π/2)). Specifically, construct (by hand)
the appropriate divided difference table and then use some of its entries to write down a
suitable Newton form of the polynomial q.

(b) Use the error formula for polynomial interpolation to obtain as small a bound as
you can for the maximum error max|x|≤π/2 |f(x)− q(x)|.

(c) Using matlab, compute |f(x)− q(x)| for a fine sequence x of points in the interval
[−π/2 . . π/2], take the maximum of these values, and comment on the difference (if any)
between it and the bound you obtained in (b).

2. (25 points) Test the correctness of the book’s function GLWeights (get a copy
from the the book’s homepage as pointed to on the homepage for CS412; else pick up a
slightly differently written copy directly from the homework page). Specifically, write (and
run) a script that checks whether, for 1 < m < 7, the weights and nodes returned by [w,x]

= GLWeights(m) really give a rule of order 2m. (Theory tells us that a rule involving m
nodes cannot have order greater than 2m, so, all you have to check is whether this rule is
exact for all polynomials of degree < 2m. Since any rule acts on functions linearly, i.e.,
Q(αf + βg) = αQf + βQg for any rule Q, functions f, g and scalars α, β, this exactness
only has to be checked for a basis, e.g., for the specific functions f(x) = xj−1, j = 1:2m.
Because of round-off, the computed rules may not get it exactly right, so you may have to
choose a reasonable(!) tolerance when judging the results.)

Discuss anything unusual you might encounter.

3. (20) Write a matlab function ppder(pp) that starts off function dpp = ppder(pp)

and produces the pp representation of g′ from the pp-representation of g contained in pp.
(Be sure not to use for-loops but, rather, use statements of the form A.*repmat(w,size(A,1),1)

(for appropriate choices of A and w) to generate the coefficient array for g′ from that for
g.)

Use your ppder (twice) to compute the second derivative of the cubic spline interpolant
to f := sin at the points in x = linspace(0,2*pi,50) (as supplied by the matlab

command spline(x, sin(x)) (be sure to do a help spline)) and compare it to the
piecewise linear interpolant to f ′′ = − sin at the same mesh, x. Specifically, compute the
maximum difference between these two piecewise linears (or, broken lines), and compute
a numerical estimate of their error as an approximation to − sin (checking the maximum
absolute error on a finer mesh).



3. (2*5 points) For each of the following, state whether it is true or false, and give a
brief reason (or evidence) for your answer.

1. If all the n points in the Newton formula for the interpolating polynomial at those n
points are the same, then the formula gives the Taylor polynomial of degree < n at
that point.

2. If A is a matrix of size [m,n], then reshape(A,n,m) gives the transpose of A.
3. There exists a one-point quadrature rule that is exact for all polynomials of degree

≤ 2.
4. If a is a vector, then the matlab command a(find(a<=0))=[] removes from a all

entries that are not positive.
5. The cubic spline interpolant with the not-a-knot end conditions at the points (0:4)*pi

to the function f(x) = 3x3 − 2x2 + x− π is f itself.


