last change: 09nov00

sumimary orn Least-squares

A linear system with more equations than unknowns is said to be overdetermined.
Usually, such a system has no solution. What to do? That depends on why you are
considering the linear system in the first place. If we think of the linear system

A?=0

as the attempt to write b as a weighted sum of the columns of A, then it makes sense to
look for x for which the residual, b — Az, is as small as possible. This is most easily done
if we measure the size of b — Az by its Euclidean norm

1o — Azll2 = /(b1 — (Ax)1)? + (b2 — (Az)2)? + - -,
and minimizing it is the same as minimizing
Ib — Az||3 = (b1 — (A2)1)* + (b2 — (Az)2)* + -+

For this reason, the x that makes this sum as small as possible is called the least-squares
solution of A? =b.

The simplest example occurs when A has just one column but two rows, e.g.,

Now we are seeking 7 so that the point Az = (x1,2z) in the plane is as close as possible
to the point b = (3,1). The set of all points of the form (z1,2x;) is a straight line, the line
spanned by (1,2), and the point Ax on that line closest to b (in the Euclidean norm) is
characterized by the fact that its residual is perpendicular to that line, i.e., A’(b— Az) = 0,
or

(1) A Az = A'b.

For our simple example, A’A = [5], A’b = [5], hence x; = 1, as is shown in the figure:

1 (©2000 Carl de Boor

This simple example illustrates the fact that, in general, the least-squares solution for
A? = b satisfies the normal equations (1), hence is uniquely determined provided A’A
is invertible. (One can show that A’A is invertible if and only if A is 1-1, i.e., if and only
if the only way we can write the zero vector as a weighted sum Az of the columns of A is
the trivial way, i.e., with = the zero-vector.) Note that the ‘normal’ equations derive their
name from the fact that they express the requirement that the residual be ‘normal’; i.e.,
perpendicular, to the columns of A.

One used to determine the least-squares solution by solving the normal equations.
However, it was realized that there is a stabler way for determining the least-squares
solution, namely via the QR factorization for A. This factorization, available in matlab
via [Q,R] = qr(A), provides a unitary matrix @) and a right-triangular or upper-triangular
matrix R for which A = QR. Recall that a matrix @ is unitary if

Qfl — Q/-
Further, R is right-triangular if it is upper triangular, i.e., if R(i,j) = 0 for all ¢ > j,

i.e., all entries of R strictly below the main diagonal are zero.
Unitary matrices are important here because they preserve the Euclidean norm:

1Qz([2 = [l[l2
for all z, as can be seen at once from the calculation
1Qz(13 = (Qz)'(Qz) = 2'Q'Qz = 2’z = ||]3.

2 (©2000 Carl de Boor

So, if A = QR with @ unitary, then also ()’ is unitary, hence
16— Az|2 = [|Q'(b — Az)||2 = Qb — Rz|l2.

Now, let’s be precise about sizes; assume that A is n x k. Then also R is n x k. Since R is
right-triangular, (Rz)(k+1:n) is zero regardless of x. Hence, in trying to make ||Q'b— Rx |2
small by proper choice of 2, we can’t do anything about (Q'b— Rz)(k+1:n) = (Q'b)(k+1:n).
The best we can do is make (Q'b — Rz)(1:k) equal to zero, assuming that R1 := R(1:k,:)
is invertible (as it will have to be in case A is 1-1). In that case, R1 is upper triangular,
hence we can solve the system

Rlz = (Q'b)(1:k)
by back-substitution. Note that we don’t need all of) for this; since

(Q'b)(1:k) = Q' (1:k,:)b = Q(:, 1:k)'b,

we only need Q1 := Q(:, 1:k), i.e., the first k columns of Q.
The matlab command [Q1,R1] = qr(A,0); explicitly provides R1 as well as @1,
hence the two commands

[Q1,R1] = qr(A,0); x = RI\(Q1’*b);
supply the least-squares solution to A? = b. Better yet, the single command
x = A\Db;

does the same thing (using, in effect, the QR factorization for A).

Obtaining the least-squares solution this way is to be preferred to solving the normal
equations for it because the condition number of R1 is the squareroot of the condition
number of A’A:

k(A A) = k(R1)? = K(A)>.

Least-squares data fitting

Overdetermined linear systems appear routinely in data fitting: One is given data
;i Yi, ¢ = l:n, but does not want to interpolate, perhaps because the data are noisy
and/or because one wants do reduce the data, i.e., fit the data with a model that uses
fewer than n degrees of freedom.

A standard example is the straight line fit in which one determines the coefficients c1

and ¢2 so as to minimize
n

D (g — (cla; +¢2))*.

=1

This makes ¢ = (cl, ¢2) the least-squares solution to the linear system
ricl4+c2=y;, 1=1ln.

3 (©2000 Carl de Boor

Hence, assuming that the column vectors x and y contain the data, we get the solution in
matlab via

c = [x ones(size(x))]\y;

We could fit such data by higher-degree polynomials, e.g., by a cubic polynomial, in
which case the best coefficients are obtained by

c = [(xm)."3 (x-m)."2 x-m ones(size(x))]\y;

where m is chosen so as to reduce the condition number of this Vandermonde matrix; e.g.,
m=mean (x). Actually, matlab’s command

c = polyfit(x-m,y,3);

accomplishes the same thing (without your having to generate that Vandermonde matrix
explicitly), and c=polyfit(x-m,y,1) would have provided the straight-line least-squares
fit. matlab’s polyval(c,z-m) then supplies the value(s) at z of the resulting cubic poly-
nomial fit.

The very same idea applies to the least-squares fitting of any kind of model

y =~ cp1(z) + cop2(x) + - + crpr()
to the data. Now we are looking for the least-squares solution of the linear system
c1p1(xi) + capa(xi) + -+ + crppr(wi) = v, 0= Lin.

Hence, in matlab, the best choice of the coefficient vector ¢ = (cy, ..., k) can be computed
by

A = zeros(n,k);
for j=1:k
AC:,j) = phi(j,x);
end
c = A\y;

This assumes that we have a function values = phi(j,x) that returns the value(s) at
x of ¢;.

4 (©2000 Carl de Boor

OPTIONAL example, not required reading!!

As a final, amusing example, suppose that we want to fit the data by a cubic spline,
with breakpoints &1 < & < --- < &. We know that matlab’s command spline(xi,eta,x)
will return the values at x of the cubic spline interpolant with the not-a-knot end condition
that interpolates the value eta(j) at its breakpoint xi(j), j=1:k. In particular, the
commands

Ik = eye(k);
A = zeros(n,k);
for j=1:k
A(:,j) = spline(xi,Ik(:,j),x);
end

will generate the matrix A whose jth column contains the values at x of the not-a-knot
cubic spline L; that is zero at xi (m) for all m not equal to j, and is equal to 1 at xi(j). This
should remind you of the Lagrange polynomials we used during the discussion of quadrature
rules. In particular, the not-a-knot spline interpolant provided by spline(xi,eta) can be
written

(2) mLy +m2Lo + -+ niLy.

This gives us an explicit model for the not-a-knot cubic spline with breakpoints & < --- <
&k, and we can use it to determine the least-squares spline fit by this model to given data
x, y. With the matrix A as generated in the preceding fragment, we get

eta = A\y;

for the best choice of the coefficients (71, ..., nx) in our spline model (2). To get the actual
least-squares cubic spline from it, we get it as the not-a-knot spline interpolant to the value
n; at &, j = Lk, i.e., as

12cs = spline(xi,eta);

Now, actually, the version of spline in the m-files subdirectory for CS412 can even handle
vector-valued functions. This means that this entire calculation can be done in just one
statement

12cs = spline(xi,spline(xi,eye(k),x’).’\y);

but this may well be too hard to understand at first reading. To explain: If y is d x
k, and x is n x 1, then the statement spline(xi,y,x’) returns a matrix of size d x
n, with its ith column the ‘value’ at x(i) of the not-a-knot cubic spline that matches
the ‘value’ y(:,j) at x(j), j=1:n. In other word, the jth row of spline(xi, y, x’)
contains exactly the result of spline(xi,y(j,:),x’). This guarantees that the jth row
of spline(xi,eye(k),x’) contains the values at x of the ‘Lagrange spline’ L;, j=1:k, and
so explains why its transpose is used instead.

5 (©2000 Carl de Boor

Finally, the cubic splines used here all satisfy the not-a-knot condition, i.e., the first
and last interior breakpoint isn’t actually a breakpoint. On the other hand, if eta has two
more entries than xi, then spline(xi,eta,x) provides the values at x of the complete (or
clamped) cubic spline interpolant. Correspondingly, the statement

12cs = spline(xi,spline(xi,eye(k+2),x’).’\y);

provides the least-squares approximation from the set of all cubic splines with breakpoint
sequence xi.

6 (©2000 Carl de Boor

