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summary on Least-squares

A linear system with more equations than unknowns is said to be overdetermined.
Usually, such a system has no solution. What to do? That depends on why you are
considering the linear system in the first place. If we think of the linear system

A? = b

as the attempt to write b as a weighted sum of the columns of A, then it makes sense to
look for x for which the residual, b− Ax, is as small as possible. This is most easily done
if we measure the size of b−Ax by its Euclidean norm

‖b−Ax‖2 =
√

(b1 − (Ax)1)2 + (b2 − (Ax)2)2 + · · ·,

and minimizing it is the same as minimizing

‖b−Ax‖2
2

= (b1 − (Ax)1)
2 + (b2 − (Ax)2)

2 + · · · .

For this reason, the x that makes this sum as small as possible is called the least-squares

solution of A? = b.

The simplest example occurs when A has just one column but two rows, e.g.,

A :=

[

1
2

]

, b :=

[

3
1

]

.

Now we are seeking x1 so that the point Ax = (x1, 2x1) in the plane is as close as possible
to the point b = (3, 1). The set of all points of the form (x1, 2x1) is a straight line, the line
spanned by (1, 2), and the point Ax on that line closest to b (in the Euclidean norm) is
characterized by the fact that its residual is perpendicular to that line, i.e., A′(b−Ax) = 0,
or

(1) A′Ax = A′b.

For our simple example, A′A = [5], A′b = [5], hence x1 = 1, as is shown in the figure:
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This simple example illustrates the fact that, in general, the least-squares solution for
A? = b satisfies the normal equations (1), hence is uniquely determined provided A′A

is invertible. (One can show that A′A is invertible if and only if A is 1-1, i.e., if and only
if the only way we can write the zero vector as a weighted sum Ax of the columns of A is
the trivial way, i.e., with x the zero-vector.) Note that the ‘normal’ equations derive their
name from the fact that they express the requirement that the residual be ‘normal’, i.e.,
perpendicular, to the columns of A.

One used to determine the least-squares solution by solving the normal equations.
However, it was realized that there is a stabler way for determining the least-squares
solution, namely via the QR factorization for A. This factorization, available in matlab

via [Q,R] = qr(A), provides a unitary matrix Q and a right-triangular or upper-triangular
matrix R for which A = QR. Recall that a matrix Q is unitary if

Q−1 = Q′.

Further, R is right-triangular if it is upper triangular, i.e., if R(i, j) = 0 for all i > j,
i.e., all entries of R strictly below the main diagonal are zero.

Unitary matrices are important here because they preserve the Euclidean norm:

‖Qx‖2 = ‖x‖2

for all x, as can be seen at once from the calculation

‖Qx‖2
2

= (Qx)′(Qx) = x′Q′Qx = x′x = ‖x‖2
2
.
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So, if A = QR with Q unitary, then also Q′ is unitary, hence

‖b−Ax‖2 = ‖Q′(b−Ax)‖2 = ‖Q′b−Rx‖2.

Now, let’s be precise about sizes; assume that A is n× k. Then also R is n× k. Since R is
right-triangular, (Rx)(k+1:n) is zero regardless of x. Hence, in trying to make ‖Q′b−Rx‖2
small by proper choice of x, we can’t do anything about (Q′b−Rx)(k+1:n) = (Q′b)(k+1:n).
The best we can do is make (Q′b− Rx)(1:k) equal to zero, assuming that R1 := R(1:k, :)
is invertible (as it will have to be in case A is 1-1). In that case, R1 is upper triangular,
hence we can solve the system

R1x = (Q′b)(1:k)

by back-substitution. Note that we don’t need all of Q for this; since

(Q′b)(1:k) = Q′(1:k, :)b = Q(:, 1:k)′b,

we only need Q1 := Q(:, 1:k), i.e., the first k columns of Q.
The matlab command [Q1,R1] = qr(A,0); explicitly provides R1 as well as Q1,

hence the two commands

[Q1,R1] = qr(A,0); x = R1\(Q1’*b);

supply the least-squares solution to A? = b. Better yet, the single command

x = A\b;

does the same thing (using, in effect, the QR factorization for A).
Obtaining the least-squares solution this way is to be preferred to solving the normal

equations for it because the condition number of R1 is the squareroot of the condition
number of A′A:

κ(A′A) = κ(R1)2 = κ(A)2.

Least-squares data fitting

Overdetermined linear systems appear routinely in data fitting: One is given data
xi, yi, i = 1:n, but does not want to interpolate, perhaps because the data are noisy
and/or because one wants do reduce the data, i.e., fit the data with a model that uses
fewer than n degrees of freedom.

A standard example is the straight line fit in which one determines the coefficients c1
and c2 so as to minimize

n
∑

i=1

(yi − (c1xi + c2))2.

This makes c = (c1, c2) the least-squares solution to the linear system

xi c1 + c2 = yi, i = 1:n.
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Hence, assuming that the column vectors x and y contain the data, we get the solution in
matlab via

c = [x ones(size(x))]\y;

We could fit such data by higher-degree polynomials, e.g., by a cubic polynomial, in
which case the best coefficients are obtained by

c = [(x-m).^3 (x-m).^2 x-m ones(size(x))]\y;

where m is chosen so as to reduce the condition number of this Vandermonde matrix; e.g.,
m=mean(x). Actually, matlab’s command

c = polyfit(x-m,y,3);

accomplishes the same thing (without your having to generate that Vandermonde matrix
explicitly), and c=polyfit(x-m,y,1) would have provided the straight-line least-squares
fit. matlab’s polyval(c,z-m) then supplies the value(s) at z of the resulting cubic poly-
nomial fit.

The very same idea applies to the least-squares fitting of any kind of model

y ≈ c1ϕ1(x) + c2ϕ2(x) + · · ·+ ckϕk(x)

to the data. Now we are looking for the least-squares solution of the linear system

c1ϕ1(xi) + c2ϕ2(xi) + · · ·+ ckϕk(xi) = yi, i = 1:n.

Hence, in matlab, the best choice of the coefficient vector c = (c1, . . . , ck) can be computed
by

A = zeros(n,k);
for j=1:k

A(:,j) = phi(j,x);
end
c = A\y;

This assumes that we have a function values = phi(j,x) that returns the value(s) at
x of ϕj .
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OPTIONAL example, not required reading!!

As a final, amusing example, suppose that we want to fit the data by a cubic spline,
with breakpoints ξ1 < ξ2 < · · · < ξk. We know that matlab’s command spline(xi,eta,x)

will return the values at x of the cubic spline interpolant with the not-a-knot end condition
that interpolates the value eta(j) at its breakpoint xi(j), j=1:k. In particular, the
commands

Ik = eye(k);
A = zeros(n,k);
for j=1:k

A(:,j) = spline(xi,Ik(:,j),x);
end

will generate the matrix A whose jth column contains the values at x of the not-a-knot
cubic spline Lj that is zero at xi(m) for all m not equal to j, and is equal to 1 at xi(j). This
should remind you of the Lagrange polynomials we used during the discussion of quadrature
rules. In particular, the not-a-knot spline interpolant provided by spline(xi,eta) can be
written

(2) η1L1 + η2L2 + · · ·+ ηkLk.

This gives us an explicit model for the not-a-knot cubic spline with breakpoints ξ1 < · · · <
ξk, and we can use it to determine the least-squares spline fit by this model to given data
x, y. With the matrix A as generated in the preceding fragment, we get

eta = A\y;

for the best choice of the coefficients (η1, . . . , ηk) in our spline model (2). To get the actual
least-squares cubic spline from it, we get it as the not-a-knot spline interpolant to the value
ηj at ξj , j = 1:k, i.e., as

l2cs = spline(xi,eta);

Now, actually, the version of spline in the m-files subdirectory for CS412 can even handle
vector-valued functions. This means that this entire calculation can be done in just one
statement

l2cs = spline(xi,spline(xi,eye(k),x’).’\y);

but this may well be too hard to understand at first reading. To explain: If y is d ×
k, and x is n × 1, then the statement spline(xi,y,x’) returns a matrix of size d ×
n, with its ith column the ‘value’ at x(i) of the not-a-knot cubic spline that matches
the ‘value’ y(:,j) at x(j), j=1:n. In other word, the jth row of spline(xi, y, x’)

contains exactly the result of spline(xi,y(j,:),x’). This guarantees that the jth row
of spline(xi,eye(k),x’) contains the values at x of the ‘Lagrange spline’ Lj , j=1:k, and
so explains why its transpose is used instead.
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Finally, the cubic splines used here all satisfy the not-a-knot condition, i.e., the first
and last interior breakpoint isn’t actually a breakpoint. On the other hand, if eta has two
more entries than xi, then spline(xi,eta,x) provides the values at x of the complete (or
clamped) cubic spline interpolant. Correspondingly, the statement

l2cs = spline(xi,spline(xi,eye(k+2),x’).’\y);

provides the least-squares approximation from the set of all cubic splines with breakpoint
sequence xi.
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