
quick answers to the midterm problems

1. T/F.
The natural cubic spline interpolant to a linear polynomial is always that polynomial

since it is (1) piecewise cubic and continuous with first and second derivative continuous,
and (2) has a zero second derivative at the endpointss. The natural cubic spline interpolant
to a polynomial of higher degree than linear is not itself unless it happens to have a
vanishing second derivative at the two endpoints (for a quadratic polynomial, this would
mean that it is actual a constant). Finally, the complete cubic spline interpolant to any
cubic polynomial is that polynomial.

The error term of neither the Midpoint, nor the Trapezoidal, nor Simpson’s rule
involves the third derivative.

A Matlab statement like the following rand(2,3); A = ans(2*ones(3,1),[3:-

1:1]); generates a matrix with length(2*ones(3,1)) rows and length([3:-1:1]) columns
regardless of what ans might be at that point, provided only that ans has as many rows
and columns as are required here (in this example, ans must have at least 2 rows and 3
columns).

The divided difference f [x1, . . . , xk] equals f (k−1)(η)/(k−1)! for some η in the smallest
interval containing all the xi, hence is positive if that derivative is positive on that smallest
interval (note, it’s not the kth derivative nor any other but the (k − 1)st derivative of f
that matters here).

2. Rewriting a script like the following:

for i=1:n
for j=1:m

a(i,j) = i*j + 2;
end

end

involves noticing that a matrix with n rows and m columns is being constructed accord-
ing to the recipe [1:n]’*(1:m)+2, and this can also (slightly less efficiently) be written
repmat((1:n)’,1,m).*repmat(1:m,n,1)+2.

3. Constructing a Newton form of the cubic Hermite interpolant p to some function
at the two points a and b involves nothing more than setting up the divided difference
table for that function for the points (x1, x2, x3, x4) := (a, a, b, b), and reading off the
requisite coefficients, as is done explicitly in the notes, as is the evaluation of it by Nested
Multiplication.

4. Considering the approximation to some function f on the interval [0 . . 1] by the
piecewise linear function L with breakpoints xi := i/N , i = 0:N , that interpolates to f
at xi, i = 0:N , seemed to be ‘French’ to many students (as one student put it). It had
been meant to be an easy problem, given that it was solved explicitly in the book and in
the notes on piecewise linear interpolation (to which I refer you for the solution). As it
turned out, most people didn’t have a clue. Writing down the error formula for polynomial
interpolation at those N + 1 points meant to be completely ignoring what was written in
the problem (which speaks explicitly of ‘piecewise linear’ interpolation).

1



5. The quadrature rule problem also was meant to be easy. The order of a quadrature
rule is the largest integer r such that the rule is exact for all polynomials of degree < r.
Equivalently, it is the order of the derivative that occurs in its error term. Hence it is the
smallest r such that the quadrature rule fails to integrate xr exactly. – For the specific
example, the rule handles constants exactly but not f(x) = x, hence has order 1.

6. To write down a number as a normalized 2-decimal-digit-floating.# means to write
it as (.b1b2)1010e, with b1 > 0 and b1, b2 ∈ {0, 1, . . . , 9} and such that (.b1b2)106 equals that
number. E.g., for 10,000, this would be (.10)10105. But, because of IEEE standard and
since I only cared that you understood the essential here, I was happy to accept answers
like 1 ∗ 104 or (1.0) ∗ 104 or even 10. ∗ 103 (the essential being that only two significant
decimal digits are allowed).

This essential point was enforced in the grading of the calculation which was to be
done in the corresponding floatingpoint arithmetic. That meant that the calculation had
to be done step by simple step, first carrying out that step in exact arithmetic and then
rounding the result to the nearest 2-decimal-digit fl.#. E.g.,

√
10, 000 + 1 + 100 involves

the steps (10, 000 + 1) → 10, 000, its squareroot is 100, etc.
But, before the fl.# calculation, you were supposed to reformulate the expression

so as to avoid the dreaded catastrophic cancellation (when two numbers, each near 100,
are subtracted from each other). The idea was to carry out something close to that
subtraction symbolically, i.e., in formula. In this case, this amounted to multiplying and
dividing by the same expression with a + rather than a −, carrying out the subtraction in
the numerator symbolically, leaving an expression whose floating-point evaluation involved
no catastrophic cancellation.

2


