
ODEs (as of 07dec00)

Here are some comments concerning slight differences in the treatment in class com-
pared to what the book does.

1. Loosely speaking, an ordinary differential equation (ODE) is an equation that in-
volves one or more derivatives of an unknown function y. However, that is a bit misleading.
The following equations all fit this definition:

y′(y(t)) = 1

y′(t) =

∫ 1

0

y(t− s)g(s)ds

y′(t) = f(t, y(t− 10))

but are not considered to be ODEs. So, more precisely, an ordinary differential equa-
tion (ODE) is a relationship

g(t, y(t), y′(t), . . . , y(n)(t)) = 0

between the values of a function and that of one or more of its derivatives. The order of the
differential equation is that of the highest derivative explicitly appearing in it. Usually, it is
possible to solve the equation explicitly for that highest derivative, i.e., write the equation
in the form

(1) y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)),

with f(t, z0, z1, . . . , zn−1) some scalar-valued function of its n+1 arguments t, z0, . . . , zn−1.
2. The book rightfully stresses the study of first-order ODEs, i.e., differential equations

of the form

(2) y′(t) = f(t, y(t)),

with f(t, z) some known function of its two arguments, t and z. Such an equation usually
has many solutions. A particular one is selected by prescribing its value at a certain point.
By tradition, this is the left endpoint of the interval [a . . b] on which we seek the function
y. Therefore, the prescribed value of y(a) is called an initial condition.

Standard software packages usually provide for the solution of first-order ODEs only.
E.g., matlab’s ode23 and ode45 both solve first-order ODEs. On the other hand, such
software can solve the first-order ODE (2) even when the solution (and, correspondingly,
the function f) is vector-valued. On ODE for a vector-valued function is also called a system

of ODEs. For this reason, the nth order ODE (1) is usually converted to an equivalent
first-order system

Z ′(t) = F (t, Z(t))

for the vector-valued function Z(t) := (Z1(t), . . . , Zn(t)) := ((y(t), y′(t), y′′(t), . . . , y(n−1)(t)),
with the vector-valued function F := (F1, F2, . . . , Fn) given by

Fi(t, Z(t)) :=

{

Zi+1(t) i < n;
f(t, Z(t)) i = n.
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See the Kepler example in the book (page 343), where this same idea is applied to convert a
second-order ODE for a function with two components to a first-order ODE for a function
with four components.

3. It always pays to consider very simple examples. A particularly simple example
occurs when f doesn’t really depend on its second argument, i.e., when

f(t, z) = g(t)

for some function g. In this case, we can write down the solution immediately:

y(t) = y(a) +

∫ t

a

g(s) ds.

Of course, if we really look at this, we haven’t accomplished much unless we have some way
of carrying out the integration. Still, it permits you in this case to compare the numerical
methods to be discussed with the quadrature methods discussed earlier in this course.

4. The book fails entirely to stress the geometric picture of the direction field
associated with the first-order ODE (2). Here is such a picture, for the interval [−1 . . 1.75]
and for the specific ODE

y′(t) = t2 + (y(t))2 − 1.
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 direction field and some solutions for  x’(t) = t^2 + x(t)^2 − 1

The figure shows, at various points in the (t, z)-plane, a little line segment whose slope
equals f(t, z). If (t, z) is one of these points, and the solution of interest to us has the value
z at t, i.e., y(t) = z, then its graph would go through the point (t, z) with slope exactly
that of the little line segment plotted there.
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In particular, the solution will start out at t = a with slope y′(a) = f(a, y(a)). The
figure shows several such solutions, all starting at a = −1, but with different initial values.
With the direction field plotted, we can get a rough idea of what the solution will do
farther to the right. For example, it looks as if any solution starting with y(−1) > 1 is
sure to grow very rapidly as t grows. Solutions y with y(−1) near zero quickly reach an
area in which all directions point downward and, correspondingly, they all decrease as t
increases, until they pass through this area of negative slope, after which they all grow.

There are more subtle things to see here for which we actually need to compute the
solutions, but which should be pointed out: The initial values used here are, in fact,

−1.75, −1.25, −.75, −.25, .25, .71878, .75.

For all but the two uppermost of these, the solution seems to come together eventually. The
two uppermost solutions, on the other hand, start out very close, but quickly move away
from each other and from the rest. Think of the implication for numerical calculations: in
an extreme case, by just rounding the initial value, you may end up with a totally different
solution. This is an example of instability (see later).

Taylor-Series method Since we know that

y′(t) = f(t, y(t)),

we know y′(a) since we are given y(a), hence can compute y′(a) by evaluating f(t, z) at
(a, y(a)).

Then, with both y(a) and y′(a) now known, we can differentiate the known expression
f(t, y(t)) for y(t) with respect to t and so obtain a formula for y′′(t) in terms of t, y(t) and
y′(t), namely the formula

y′′(t) = ft + fz · y
′,

in which ft and fz are the abbreviations

ft := (D1f)(t, y(t)), fz := (D2f)(t, y(t)),

and Djf is the partial derivative of f with respect to its jth argument, j = 1, 2.
For the example of the figure, we had

y′(t) = t2 + (y(t))2 − 1,

hence
y′′(t) = 2t + 2y(t)y′(t),

therefore also
y′′′(t) = 2 + 2(y′(t))2 + 2y(t)y′′(t),

etc.
In this way, we can, in principle, compute as many terms of the Taylor series

y(a + h) = y(a) + y′(a)h + y′′(a)h2/2 + · · ·
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for y at a as we care to, thus obtaining more and more accurate estimates for y(a + h).
This is the Taylor series method.

This method looks a bit forbidding, if the repeated differentiations of f(t, y(t)) are
written out formally, in terms of the various partial derivatives of various orders of the
function f .

However, things look less forbidding if you think of the method in the following terms:
Assume that you have written a subroutine for the evaluation of f(t, y(t)) for given t
and y(t). Then, this would be a good occasion to apply what you have learned about
differentiating a program earlier. Differentiate this program with respect to t as many
times as required, and so obtain a program that computes, for given (t, y(t)), not only
y′(t), but also at the same time y′′(t), y′′′(t), etc.

Or, as done in class, if the ‘slope’ function f = f(t, z) is simple, then it is easy to use
Matlab’s symbolic toolbox command diff to provide an m-file dtftz(f,zprime) like the
following:

function deriv = dtftz(f,zprime)
%DTFTZ total t derivative of f(t,z) for given dz/dt
%
% deriv = dtftz(f,zprime)
%
% returns the string containing the total derivative
%
% deriv = D_t f(t,z(t)) + z’ D_z f(t,z)
%
% wrto t of the function f(t,z) described by the string f ,
% using z’(t) as specified by the string zprime .
deriv = char(simplify(sym( [ ...

char(diff(f,’t’)), ’+(’, zprime, ’)*(’, char(diff(f,’z’)), ’)’...
])));

that inputs the string f that describes f in terms of t and z, and a string zprime describing
z′, and outputs a string describing the total derivative ft + fzz

′ of t 7→ f(t, z(t)) with
respect to t. E.g., the command inline(dtftz(f,f),’t’,’z’)would provide the function
t 7→ y′′(t) as a function of t and z = y(t).

Euler’s method is, in a way, the simplest Taylor-Series method: one stops with the
first term:

y(a + h) ∼ y(a) + hf(a, y(a)) =: ya+h.

For most examples, this will only work if h is very small, hence one simply repeats this
procedure at t = a + h, t = a + 2h, etc. Geometrically, we can think of it as following that
slope segment for a little bit, computing the required slope at the point we reach, going
in that direction for a little bit, etc., as indicated for our earlier example for two of the
earlier solutions shown, and for a stepsize of h = 1/2, in the following figure.
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 direction field and Euler approximations for  x’(t) = t^2 + x(t)^2 − 1

For the upper solution, the last two steps of Euler’s method aren’t even shown since it
has a value greater than 12 by the time it reaches t = 2. For the lower solution, Euler’s
method also initially grows much faster, but is then pushed back by those negative slopes
and ultimately seems to parallel the correct solution, at a slightly lower level.

Runge-Kutta methods The basic idea is simple. Instead of using the right side just
once, as in Euler’s method, where

y(t + h) ∼ y(t) + hf(t, y(t)),

why not sample the function f(t, z) at several points near the point (t, y(t)), i.e., get
numbers kj := hf(t + αjh, y + hzj) and use a weighted sum

y(t + h) ∼ y(t) + w1k1 + w2k2 + · · · .

We are free to choose the weights wj , the αj , and the zj . The goal would be to choose
them in such a way that the expansion of the right side in powers of h agrees to as many
terms as possible with the Taylor series expansion

y(t + h) = y(t) + hy′(t) + (h2/2)y′′(t) + · · · .

With r such suitably chosen kj , we would expect to be able to match all terms up to and
including (hr/r!)y(r)(t), hence making the Local Truncation Error or LTE be of order
r + 1, i.e., involve hr+1.

The book goes through the manageable example of the second-order Runge-Kutta
method, and wisely refrains from deriving the most popular Runge-Kutta method, the
fourth order one.
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An equivalent but, perhaps, simpler view (that also applies to the discussion of mul-
tistep methods later) is to think of such methods in terms of numerical quadrature. After
all, we know that

y(t + h) = y(t) +

∫ t+h

t

f(t, y(t)) dt,

hence it makes sense to think of our approximation

y(t + h) ∼ y(t) + w1k1 + w2k2 + · · ·

as providing (or being derived from) the approximation

w1k1 + w2k2 + · · · ∼

∫ t+h

t

f(t, y(t)) dt,

particularly since we are choosing kj in the form hf(t + αjh, y + hzj), with the numbers
f(t + αjh, y + hzj) supposedly close to values of the exact integrand, f(t, y(t)). The only
complication is due to the fact that we don’t know the integrand exactly, hence have
to guess at reasonable values for y(t + αjh), and do provide these guesses in the form
yj + hzj . With this view, it is not surprising that, for the simplest ODE y′(t) = g(t), the
various Runge-Kutta methods reduce to standard quadrature rules; e.g., RK2 becomes the
Trapezoidal Rule, and RK4 becomes Simpson’s rule.

This view also makes it easy to remember the meaning of the order of a numerical
method. It works just as with the order of a composite quadrature rule. If the simple rule
(here the single step) has (local truncation) error consthr+1, then, at best, the error at the
right endpoint b of the interval of [a . . b] of interest will be (b− a)/h times that error, i.e.,
roughly of the form consthr, and therefore will be called a method of order r. E.g., the
local truncation error for RK2 is like that for the trapezoidal rule, i.e., O(h3), hence the
method is called Runge-Kutta of order 2.

stability

In the present context, this term (see Section 9.1.2 in the book) refers to the effect of
an error in the initial condition.

So, denote by y(t, s) the value at t of the solution of our first-order ODE

y′(t) = f(t, y(t))

that satisfies the initial condition y(a) = s. In an earlier figure, we saw that even very
small changes in s can ultimately lead to large differences in the solution, but we also
saw that rather large differences in the initial data can, at times, have little effect for the
solution at later times.

Specifically, we want to compare y(t, s) with y(t, s+σ) for some error or perturbation
σ in the initial value. We look at their difference,

η(t) := y(t, s + σ)− y(t, s)
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as a function of t. On differentiating both sides, we find that

η′(t) = y′(t, s + σ)− y′(t, s) = f(t, y(t, s + σ))− f(t, y(t, s)),

using the fact that both y(·, s) and y(·, s + σ) satisfy our differential equation. Now,
assuming that f is smooth, we can apply Rolle’s Theorem that g(a)− g(b) = g′(ξ)(a − b)
for some ξ between a and b to the function g(z) = f(t, z) with a = y(t, s + σ), b = y(t, s),
to conclude that

η′(t) = fz(t, ξt)(y(t, s + σ)− y(t, s)),

i.e.,

η′(t) = fz(t, ξt) η(t),

for some ξt between y(t, s) and y(t, s + σ).

This simple formula tells us a lot, as follows: If fz(t, ξt) is positive, then a positive
y(t) will grow more positive, while a negative y(t) will grow more negative. In other words,
if fz(t, ξt) is positive, then the gap between y(t, s) and y(t, s + σ) will be amplified or

widened, i.e., will be made worse.

On the other hand, if fz(t, ξt) is negative, then a positive y(t) will grow less positive,
while a negative y(t) will grow less negative. In other words, if fz(t, ξt) is negative, then

the gap between y(t, s) and y(t, s + σ) will be attenuated or lessened, i.e., will be made

better.

This is very nicely illustrated in our earlier example. There, we had

f(t, z) = t2 + z2 − 1,

hence

fz(t, z) = 2z.

Thus, fz(t, z) is positive or negative depending on whether z is positive or negative. In-
deed, we notice in the figure that any two solutions both above the t-axis pull apart as t
increases while, any two solutions below the t-axis draw together as t increases, and both
the amplification above and the attenuation below can be extreme, even for this simple
and mild example.

error

As the next figure shows, after several steps of a numerical scheme, such as Euler
or Runge-Kutta, the error consists of two parts, the local truncation error and the
accumulated truncation error. In finite-precision arithmetic, there is, in addition, the
local and the accumulated roundoff error. Once we decide with what precision to calculate,
then the only part of this error we can control is the local truncation error (at every step),
and we control this by controlling the step size.
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The details of such a step-size control can be quite intricate, but the basic idea is
simple: after taking a step of size h, compare an estimate for the local truncation error
with a specified tolerance; if the tolerance is smaller, shorten (usually, halve) the step size
and try again; if the tolerance is slightly larger, accept and do the next step with the same
h; if the tolerance is significantly larger, accept and do the next step with a larger (usually,
doubled) h.

The simplest way to get an estimate for the local truncation error is to do also
two steps with half the stepsize and compare. This is a bit expensive compared to the
available alternative. Also, while the local truncation error behaves like consthr for some
r as h → 0, we are usually working with values of h for which this is not yet true.

The standard alternative is something like Runge-Kutta-Fehlberg, – not explicitly
mentioned in the book but used in ode23 and ode45, hence, e.g., the 45, to indicate that a
4th order RK along with a related 5th order formula developed by Fehlberg, is used. In this
approach, the error in the given method is estimated by comparing it with a higher-order
result. This assumes that the current step is sufficiently small, since otherwise there is no
reason to believe that the higher-order method is more accurate.

Here is a simple numerical example. Taking the earlier sample equation with

f(t, z) = t2 + z2 − 1,

and starting at a = −1 with y(a) = 3/4, and using h = 1, one step of Euler’s method gives
the approximation:

yE(a + h) = yE(0) = 3/4 + F1,

with
F1 = 1 · ((−1)2 + (3/4)2 − 1) = (3/4)2,
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hence
yE(a + h) = yE(0) = 3/4 + F1 = 21/16 = 1.3125.

From this, 2nd order Runge-Kutta computes

F2 = hf(a + h, yE(a + h)) = 1 · ((0)2 + (21/16)2 − 1) = (21/16)2 − 1 = .72265625,

hence
yRK(a + h) = 3/4 + (F1 + F2)/2 = 1.3925781,

giving an estimate of the error in the Euler approximation of ∼ 0.08. In fact, from the
earlier figure, y(0) ∼ .8, so the error in the Euler approximation is much larger than our
estimate. Of course, the reason for this is that the specific h used here was not ‘small
enough’. A look at the earlier figure confirms this: The direction field at the end of the
Euler step is very different from that near the beginning of the step.

This illustrates one of the difficulties of local step size control.
One additional issue has to be faced: is one looking for a small absolute error, or for

several correct digits, i.e., a small relative error, or for a combination of the two?
Another difficulty is the possible instability of the differential equation itself, i.e., the

fact that, even though the local truncation error is carefully controlled, the accumulated
error may grow or, worse yet, we may have no idea about it. Of course, one can monitor
the size of fz(t, y(t)) and more sophisticated ODE solvers will do that.

However, the only defense against this is to run one’s program with several tolerances
and compare the results.

higher order ODEs and/or systems

Since, by now, the available software for solving first-order initial value problems
(IVPs) has become quite sophisticated, the standard approach to solving higher-order
ODEs and/or systems of ODEs is to convert any such to an equivalent first-order system.

In this conversion, it pays to make a dictionary that shows how the original dependent
variables and their derivatives are related to the entries of the new vector-valued dependent
variable.

It is also possible to introduce the independent variable as the zeroth entry of the
solution vector, thereby making the system formally autonomous (i.e., the right side doesn’t
depend explicitly on the independent variable any more). This makes the discretization
process neater.

use of Hermite interpolation

The methods for solving ODEs discussed so far (i.e., one-step methods) as well as the
methods only touched on in class (the multistep-methods, see Section 9.3 and its subsec-
tions) provide the value of the solution at a certain set of points t0 = a < t1 = a+h1 < t2 =
t1 + h2 < · · · < tn = b, the meshpoints used. For values at other points, local polynomial
interpolation is very convenient. Since we also know the first derivative of the solution
at these meshpoints, Hermite interpolation is particularly useful here. No doubt you re-
member very well how to construct, e.g., the piecewise cubic Hermite interpolant. (We
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match the computed values y(ti) and y(ti+1) as well as the numbers y′(tj) = f(tj , y(tj)),
j = i, i + 1 by doing cubic interpolation at the points ti, ti, ti+1, ti+1. For this, we gen-
erate the divided difference table as discussed earlier in the course, using the fact that
y[tj , tj ] = y′(tj), j = i, i + 1.)

multistep methods

We briefly discussed multistep methods in which one uses the approximation

y(t + h) ∼ y(t) +

∫ t+h

t

pk−1(t) dt,

with pk−1 the polynomial approximation to y′(t) = f(t, y(t)) obtained by matching at
certain k nearby tj the (approximate) value f(tj , yj) ∼ y′(tj).

The standard methods come in two flavors:
(i) k-th order Adams-Bashforth or explicit methods, in which the calculation of yn+1

is based on (tj , yj) for j = n−k+1:n for some k; and
(ii) kth order Adams-Moulton or implicit methods, in which the calculation of yn+1

is based on (tj , yj) for j = n−k+2:n+1 for some k, i.e., includes in the construction
of pk−1 the very information (tn+1, yn+1) to be determined; hence the term ‘implicit’.
The two kinds are usually used in tandem, using first the explicit method to predict

yn+1, and then follow it up with the implicit method to correct that value, and using the
difference between the predicted and corrected value in the stepsize control.

BVPs

We only discussed briefly a particular example, that of a two-point Boundary Value
Problem for a second-order ODE, solving it approximately by finite differences (see page
255-256), and gave one example in which we used Shooting to solve such a problem with
the aid of an IVP solver.
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