
last change: 10oct00

piecewise cubic interpolation

Cubic Hermite interpolation provides a nice occasion to admire the power of divided
differences. As the script ShowHermite so nicely shows, coalescence of interpolation points
leads to osculation, i.e., to matching of derivative values.

In particular, the Newton form

P4(x) = f [x1] + (x− x1)(f [x1, x2] + (x− x2)(f [x1, x2, x3] + (x− x3)f [x1, . . . , x4]))

of the cubic interpolant to f at the four points x1, x2, x3, x4 makes good sense even when
x1 = x2 and x3 = x4 provided only that we explain properly what, e.g., f [x1, x1] might
be. But that is easy since we know from Calculus that limx2→x1

f [x1, x2] = f ′(x1). To
keep the notation simple, I’ll write out everything for the special case that x1 = 0 = x2,
x3 = h = x4. The divided difference table for f at this four-point sequence is

x f [] f [, ] f [, , ] f [, , , ]

0 f(0)
f ′(0)

0 f(0) f [0, 0, h]
f [0, h] f [0, 0, h, h]

h f(h) f [0, h, h]
f ′(h)

h f(h)

from which we derive the cubic Hermite polynomial matching f in value and slope at both
0 and h to be

(1) q(x) = f(0) + x(f ′(0) + x(f [0, 0, h] + (x− h)f [0, 0, h, h])).

Since hf [0, 0, h, h] = f [0, h, h]− f [0, 0, h], this takes the power form

q(x) = f(0) + x(f ′(0) + x(2f [0, 0, h]− f [0, h, h] + xf [0, 0, h, h])).

Translation of this formula, from the interval [0 . .h] to the interval [xi . .xi+1] of length
hi := ∆xi, provides a formula for the cubic polynomial qi that matches value and slope of
f at both xi and xi+1, as follows. Let y= f(x), s= f ′(x) for some increasing sequence x,
and set further h=diff(x), dy=diff(y)./h= (f [xi, xi+1] : i = 1:n−1). Then

f [xi, xi, xi+1] = (dyi − si)/hi =: ei0, f [xi, xi+1, xi+1] = (si+1 − dyi)/hi =: ei1,

hence
f [xi, xi, xi+1, xi+1] = (ei1 − ei0)/hi =: di.

With this, we conclude that

(2) q(z) := qi(z) := yi + (z − xi)(si + (z − xi)(ci + (z − xi)di)), xi ≤ z ≤ xi+1,

1 c©2000 Carl de Boor



with
ci := 2ei0 − ei1

is piecewise cubic with breaks at the xi and matches f in value and slope at each xi,
i = 1:n. Our textbook prefers to write the cubic pieces in the form (1), but that prevents
the use of ppval for the evaluation of this piecewise cubic.

function pc = pwch(x,y,s)
%
% Pre: x = strictly increasing sequence of length n
% y, s = sequence of the same orientation and length as x
%
% Post: pc = a description, ready for use with ppval, of the piecewise
% cubic function q that satisfies
% q(x_i) = y_i, q’(x_i) = s_i, i=1:n .
h = diff(x); dy = diff(y)./h;
dzzh = (dy-s(1:end-1))./h; dzhh = (s(2:end)-dy)./h;
pc = mkpp(x,[(dzhh-dzzh)./h 2*dzzh-dzhh s(1:end-1) y(1:end-1)]);

Since qi is the cubic interpolant to f at the four-point sequence xi, xi, xi+1, xi+1, the
error formula for polynomial interpolation tells us that, for xi ≤ z ≤ xi+1,

f(z)− q(z) = f [xi, xi, xi+1, xi+1, z](z − xi)
2(z − xi+1)

2.

On that interval, |(z−xi)
2(z−xi+1)

2| ≤ (∆xi/2)4, while f [xi, xi, xi+1, xi+1, z] = f (4)(η)/4!
for some η between xi and xi+1. Hence, altogether,

(3) |f(z)− q(z)| ≤ max
x1≤η≤xn

|f (4)(η)|/384 max
i

(∆xi)
4.

the cubic spline

In piecewise cubic Hermite interpolation, we match values and slopes at the given
data sites xi, i = 1:n, and obtain a continuous function with continuous first derivative.
However, it is not always easy to supply those slopes, while, at the same time, it turns out
to be possible to so choose the numbers si for given y = f(x) that the resulting interpolant,
S, has even the second derivative continuous. Remarkably, the error bound available for
this interpolant, called the cubic spline interpolant, is

(4) |f(z)− S(z)| ≤ max
x1≤η≤xn

|f (4)(η)|(5/384) max
i

(∆xi)
4.

i.e., only five times as big as the one for the piecewise cubic Hermite interpolant which
uses twice as much information about f .

From (2) and with hi := ∆xi, y′i := ∆yi/hi, we compute that

(5) q′′i (xi) = 2ci = 2(2ei0 − ei1) = 2(2(y′i − si)− (si+1 − y′i))/hi = 2(3y′i − 2si − si+1)/hi.

2 c©2000 Carl de Boor



Therefore, replacing here xi+1 by xi−1, hence hi by −hi−1, si+1 by si−1 etc.,

(6) q′′i−1(xi) = 2(3y′i−1 − 2si − si−1)/(−hi−1).

Thus the requirement that q′′i−1(xi) = q′′i (xi) is equivalent to the equation

(7) hisi−1 + 2(hi−1 + hi)si + hi−1si+1 = 3(hi−1y
′
i + hiy

′
i−1).

We get such an equation for each interior breakpoint, i.e., for i = 2:n−1. This gives us
n − 2 equations in the n unknowns s1, . . . , sn. Two additional equations are needed to
determine the n slopes uniquely. Here are some standard choices.

complete spline: Simply supply si = f ′(xi) for i = 1 and i = n. That leaves us with
n− 2 unknowns to be determined by the n− 2 equations (7), i = 2:n−1. Such a spline is
also known as a clamped spline since we are prescribing its slope at the ends.

natural spline: Insist that S′′(x1) = 0 = S′′(xn), i.e., that

3y′1 − 2s1 − s2 = 0 = 3y′n−1 + 2sn + sn−1.

Such a spline is also known as a free spline, and both terms refer to the fact that this
spline models (roughly) the behavior of a draftman’s spline that is forced to go through the
given data points but is not clamped at the ends. Don’t be fooled by the term ‘natural’,
though. If the function being interpolated doesn’t have a vanishing second derivative at
the ends, then near the ends, the error bound (4) is not valid. Under those circumstances,
one does better by using one of the other end conditions discussed here, or by explicitly
prescribing second derivatives. From (5), (6), this means that the two additional equations
take the form

3y′1 − 2s1 − s2 = h1f
′′(x1)/2 3y′n−1 + 2sn + sn−1 = hn−1f

′′(xn)/2.

not-a-knot spline: Insist that also the third derivative be continuous across x2 and
across xn−1. In effect, this makes q1 and q2 be the same polynomial (hence the break or
‘knot’ x2 might as well not be there), and also makes qn−2 the same polynomial as qn−1.
This is the interpolating spline returned by matlab’s spline(x,y). It has about the same
error bound as complete spline interpolation and doesn’t require any slopes.
matlab’s current version of spline can provide, optionally, the complete spline interpolant.
Specifically, if, in the statement spline(x,y), y has two more entries than x, then the
first and last entry of y are taken to be the endslopes to be matched. E.g.,

n = 20; x = linspace(0,2*pi,n);
pc = spline(x,[cos(x(1)) sin(x) cos(x(n))]); pcc = spline(x,sin(x));
z = linspace(0,2*pi,100); plot(z, ppval(pc,z)-ppval(pcc,z));

provides both the complete spline interpolant to sin at twenty equally-spaced points as
well as the not-a-knot spline interpolant, and plots their difference (which is very small,
but is noticeable near the ends). Any other end conditions can be enforced with the aid of
complete spline interpolation, as I’ll make clear when we get into solving systems of linear
equations.

On CS machines, matlab provides the command splinetool which makes it easy to
experiment with these (and other choices for the) endpoint conditions.
matlab’s entire suite of commands for work with piecewise polynomials, spline, ppval,
mkpp, unmkpp, also handle vector-valued piecewise polynomials, for working with planar
and spatial curves. We’ll return to that topic later in the course, if there is time.

3 c©2000 Carl de Boor


