last change: 250ct00

piecewise linear interpolation

The piecewise linear (or, broken line) interpolant to f at 1 < - -+ < x,, is, by definition,
the function

L(z) :== Li(z) = f(zi) + flri, viva](z — 23), @ <2 <@y,

with

| Li(»), z < T1;
L(z)'_>{_L;1(zL z >-m;.

If y = £(x) provides the values y(i) = f(x;) of f at the x;’s, then
pl = mkpp(x, [diff(y)./diff(x) y(1:n-1)1);

provides, in pl, a description of the broken line interpolant that can be used in ppval to
provide values of the broken line interpolant, as in the following script:

% script: myshowpl

n = 10;

x=linspace(0,2*pi,n);

y = sin(x);

pl = mkpp(x, [diff(y)./diff(x) y(1:n-1)1);

plot(x,y,’0’)

xx = linspace(-2,2%pi+2,100);

hold on, plot(xx,ppval(pl,xx)), hold off

title(’broken line interpolant to sin at linspace(0,2%*pi,10)°’)

which gives a fine figure.

broken line interpolant to sin at linspace(0,2*pi,10)

2 T T T

-2 0 2 4 6 8 10

1 (©2000 Carl de Boor

piecewise polynomials in matlab: the mkpp command

Assuming that x has the entries 1 < 9 < -+ < xy41, and the matrix ¢ has the
entries ¢;j, ¢ = 1:4, j = 1:k, the command

pp = mkpp(x,c);

returns a structure, pp, that can be used in the command ppval (pp,xx) to produce the
value(s) at xx of the piecewise polynomial function f, given by the rule

f@)=ciu(z—z)" ' +ep@—a) 2+ +c, r; < v <miyr;i= 1L

Note that c¢(i,:) provides the polynomial coefficients, from highest to lowest, for the ith
polynomial piece, but these are multiplied by shifted powers, for greater stability. The
points z; are called the breakpoints since one switches from one polynomial piece to the
next one as one goes across such a point.

What if = does not lie in the interval [z; .. z¢41]|? If 2 < x1, then ppval will simply
use the first polynomial piece, i.e.,

f(@) =cn(r—z) +epa(e —)2+ e, < 1.

If x > xyy1, ppval will use the last polynomial piece.
With this in mind, we see that the statement

pl = mkpp(x, [diff(y)./diff(x) y(1:n-1)]1);
used above makes up the function

L(a:) — Yi+1 — Yi (

x —x;) + yi, i = l:length(x) — 1,
Tit1 — T

exactly as wanted.

piecewise polynomials in matlab: the ppval command

matlab’s command ppval is (now) fully vectorized, thanks to an approach quite different
from the one our textbook takes to the evaluation of broken lines (and other pp functions).
Here’s the issue. To evaluate L at z, we must first determine the ¢ for which z; < z < x;44.
The book proposes to do this by binary search (alias bisection), as realized in the function
Locate. However, such a search is not easy to vectorize, i.e., to carry out simultaneously
for all the entries of a vector z. matlab’s ppval is based on the following observation.

Suppose we had in hand the vector I with the property that x(I(k)) <= z(k) <=
x(I(k)+1) for all k. Then we could compute L(z) in the one statement

v = b(I).*x(z-x(I)) + a(I);

assuming only that all the vectors occurring here, i.e., b, z, x, and a, have the same
orientation, so the pointwise vector multiplication works correctly.

2 (©2000 Carl de Boor

We can obtain that vector I by making use of matlab’s fast sorting command, sort,
which, with the command [s,index] = sort(t), provides the sequence index with the
property that t (index) equals the sorted version, s, of the entries of t. (Do a help sort.)
In effect, index tells us where each entry of t ends up when we sort the entries of t, from
smallest to largest, i.e., from left to right if we think of them as points on the real line.
This is exactly the kind of information we’d like to know for the combined sequence [x
z].

For example, if x=1:3 and z=0:4, then [ignore,index] = sort([x z]); gives us
>> index = 4 1 5 2 6 3 7 8

Since x comes first in [x z] and has 3 entries, we know that, in this particular index
sequence, the numbers 1, 2, 3 refer to x(1), x(2), x(3), respectively, while the numbers
greater than 3=1length(x) refer to entries of z. In particular, the matlab command

>> j = find(index>length(x))
j=1 3 5 7 8

provides the positions in the sorted sequence of the entries of z.

Now assume (as is the case in our example) that the entries of z are ordered. Then
the position j(i) of z(i) in the sorted sequence ignore differs from i by the number of
entries from x to the left of it in that sequence. We check this for our example:

>> find(index>length(x)) - (1:length(z))
ans = 0 1 2 3 3

Indeed, e.g. for z(2), that difference is 3-2, corresponding to the fact that there is exactly
one of the entries of x to the left of it. But this says that x(j(i)-1i) is the largest entry of
x to the left of z(i), hence j(i)-1 is the number I(i) we are seeking, — except when this
number is 0, as it is in our example for the first entry. This indicates that the corresponding
z (i) lies entirely to the left even of the first entry of x and, in that case, we defined the
value of L to be the value of its first linear piece, hence want the interval index to be 1 in
this case. One way to ensure this is to make sure that all the entries of I are at least 1,
using max as follows:

>> I = max(find(index>length(x)) - (1:length(z)) , 1)
I =1 1 2 3 3

Have a look at matlab’s ppval, — and note that their construction of I looks slightly
more formidable

I = max([find(index>length(x)) - (1:length(z)); ones(1l,length(z))])

Note that matlab’s ppval is even capable of evaluating the given pp function at all the
entries of a matriz, returning the values in a matrix of the same size.

3 (©2000 Carl de Boor

Here is a script for the comparison of the book’s evaluation, i.e., the command pwl-
eval, with matlab’s command, ppval:

% script for timing two versions of pp evaluation:

disp(’ Length(x) pwleval (x) ppval(x)’)

disp(’ Time Time)
disp(’-———————————————— ?)
n = 50;

x = [0 sort(rand(1,n-2)) 1];

y = sin(10*pi*x);

a=y(l:n-1); b = diff(y)./diff(x);

pl = mkpp(x, [b al);
if “exist(’tosort’), tosort=0; end
for L=50:200:950
z = rand(1,L); if tosort, z = sort(z); end;

tic

yy = pwleval(a,b,x,z);

tl = toc;

tic

yy = ppval(pl,z);

t2 = toc;

disp(sprintf(’%6.0f %13.2f %13.2f ~’,L,t1,t2))
end

Here is the output of a run, for which tosort was not defined, hence the sequence z
of evaluation sites is not at all ordered. This is the worst situation for the book’s Locate,
as it is designed to take advantage of the ordering in a typical z:

Length (x) pwleval (x) ppval(x)
Time Time
50 0.28 0.00
250 1.04 0.05
450 1.81 0.11
650 2.69 0.16
850 3.57 0.17

For a sorted z, the book’s pwleval does much better, but still, ppval also benefits
from such sorting and is still the champion:

Length (x) pwleval (x) ppval(x)
Time Time
50 0.11 0.05
250 0.44 0.05
450 0.71 0.05
650 0.99 0.11
850 1.32 0.11

4 (©2000 Carl de Boor

error analysis for piecewise linear interpolation

On [371 .. $i+1],

f(2) = Li(2) + flzi, zit1, 2)(2 — i) (2 — @ig1)

while
max |z — ;]2 — zip1| = (Axy)?/4

max | fla;, ziy1,2]| < mZaX\f"(ZWQ
with
Az; =241 — ;

the standard notation for the forward difference.

For equally spaced breakpoints: x = linspace(alpha,beta,n), get Ax; = h :=
(8 —a)/(n—1) for all i, hence max, |f(z) — L(z)| < max, |f”(z)|/8h*. To force this error
bound to be less than a given tolerance 7, assuming that we know some Ms with

max |f"(2)] < M,

we would demand that
h2M2/8 S T,

or, solving for h,
h S \/ 8T/M2.

Since h = (6 — a))/(n — 1), this says that we want

(6 —a)\/My/(8T) <n-—1,

hence, finally, with [r] the smallest integer > r (this is the so-called ceiling function),

n=1+[(8—a)yMy/(87)]

is the smallest n we can get away with here.
However, by going to a uniform mesh, we have possibly thrown away a chance to be
efficient in use of memory. Our error bound for the interval [z;, z;+1] gave us

[f(2) = Li()| < max [f"(n)l/8 (Az;)*.

mi<"7<$i+1

So, to achieve a given tolerance 7, we should be able to use relatively large Ax; in places
where |f”] is small, as is the case in the interval [1 .. 3] for the humps function shown
in Figure 3.2 of the book. This leads to the powerful idea of choosing the sequence x
adaptively, adjusting the size of Az; to the size of |f”| rather than working with one
constant My, i.e., working with the worst possible assumption.

5 (©2000 Carl de Boor

For this, one would have to know the size of | f”|. However, it is often sufficient to work
with some crude assumption, like the following: a good estimate for the size of the error in
the interval |x; .. xz;+1] is the error | f(m;) — L(m;)| at the midpoint, m; := (x; + x;41)/2.
Of course, such an estimate can easily be totally wrong, as it would be for f = sin and
x; = 0,241 = 2m. But, in many cases, it works fine, as it does in the book’s example in
which f is matlab’s function humps and the interval is [0..3].

T /F: If f” is of one sign, then the error in the interval [x;..xz;1] is at most 2| f(m;) —
L(m;)].

Appreciate the power inherent in matlab’s ability to run functions recurrently, as is
evidenced by the simplicity of the book’s pwladapt.

6 (©2000 Carl de Boor

