last change: 26sep00

Polynomial interpolation

Most functions occurring in scientific computing cannot be evaluated exactly. This
means that such functions must be approximated by functions that can be evaluated
exactly in finitely many steps, namely the polynomials (and, more generally, the piece-
wise polynomials and, even more generally, the piecewise rationals, and even these use
polynomials). Further, the simplest polynomial approximation scheme is polynomial in-
terpolation, which is the topic of Chapter 2 of the book. Here is a somewhat different (and
faster-moving) description of the basic ideas.

The monomial of degree k is, by definition, the function +— x*. (Mathematics
has yet to develop a symbol for this function, so, I made one up, namely ()*.)

A polynomial is a weighted sum of (finitely many) monomials:

(1) p(z) = ap + ar1x + axx® + - - - + az”,

and the ay, are its coefficients. (1) is only one of several ways to label these coefficients.
In Matlab (and in Algebra), the following alternative is standard:

(2) p(x) = a1z a2+ +ay,

(Note how in this way, coefficient-index and x-exponent always sum to n.) Specifically, if
a = [a1, a2, ..., a,], then polyval(a,x) returns the value at x of the polynomial (2).
The textbook does something in between:

(3) p(z) = ay + agx + - + apaz™

However it is done, the leading coefficient of a polynomial is the nonzero coefficient
of the monomial of highest degree appearing in p, and that degree is, by definition, the
degree of the polynomial. There is also the notion of highest coefficient, but it depends
how we view the polynomial: if we think of p as a polynomial of degree < n, then its
highest coefficient is the coefficient of ™~ !.
What about the polynomial
p:x— 0,

i.e., the polynomial that is identically zero? It is said to be of degree —1; it has no leading
coefficient. However, for any n > 0, its highest coefficient as a polynomial of degree < n is
0.

Let x be an arbitrary vector, and let a be the n-vector that contains the coefficients
of the polynomial p given in (2). Then the script

v = zeros(size(x));
for k=1:length(a)

v = x.xv + a(k);
end

1 (©2000 Carl de Boor

constructs the vector v of the same shape as x for which v(i) equals the value of p at x(i)
for i=1:1ength(x). (In fact, this script even works in case x is, more generally, an arbitrary
matrix.) The script incorporates nested multiplication or Horner’s method and is
based on the observation that we can save multiplications by factoring (3) appropriately.
E.g., for n = 4,

p(x) = ((a1 x .+ az) * ¢ + az) * x + ay.

(With the book’s more standard formulation (3), the for statement would be slightly more
complicated: for k=length(a):-1:1.)
Now assume that both x and a are column vectors. Then the statement

y = a(D)*x."(n-1) + a(2)*x."(n-2) + ... + a(n-D*x + a(n)

generates the column vector y which contains the values of p at the points in x, i.e.,
y(i)= p(x(i)), all i. This formulation is ready-made for matrix multiplication. If we
define

V=[x."(n-1) x.(n-2) ... x ones(size(x)) 1;

to be the matrix with columns x."(n-1), x."(n-2), ..., x.70, then we can write the
calculation of y = p(x) as

y = Vxa;

Of course, I don’t propose to evaluate p this way; for that, the recommended method
is nested multiplication aka Horner’s method. But this matrix formulation is ideal for
polynomial interpolation, as follows.

Suppose we are to find a polynomial of degree < n that matches given values y; at
given data sites x;, ¢ = 1,...,n. This means that we are seeking a column n-vector a so
that Vxa = y. If there is such a vector, then Matlab computes it this way:

a = V\y;

In effect, matlab solves the linear system V*? = y numerically, something to be discussed
at greater length later.

Are we entitled to expect a solution to this linear system Vx? = y regardless of the
choice of the n-vectors x and y? Since V is a square matrix, we only have to check whether
the homogeneous system V*? = zeros(size(y)) has only the trivial solution. So, suppose
V*a is a zero vector. This means that our polynomial p with coefficient vector a takes
the value 0 at each of the points x1,...,x,. Hence, assuming that there are no repeats
in the sequence x1,...,x,, our polynomial p of degree < n has at least n distinct zeros.
There is only one such polynomial, namely the polynomial with all its coefficients equal to
zero. Since V is a square matrix, it follows that the linear system V*? = y has exactly one
solution for every choice of y.

We have proved: If (x1,...,x,) Is a sequence with no repeats, then, for arbitrary
(y1,--.,Yn), there is exactly one polynomial p of degree < mn that matches the given
information in the sense that p(x;) = y;, i = Lin.

2 (©2000 Carl de Boor

The matrix V (with the order of the columns inverted, i.e., as in the textbook) has
been called the Vandermonde matrix (by Lebesgue). In matlab, one assembles it by a
loop, making use of the fact that x.” (k+1) equals x.*(x."k):

n = length(x);
V = ones(n,n);
for k=n-1:-1:1
V(:,k) = x.*%V(:,k+1);
end

However, there is usually not much of a reason for assembling the Vandermonde since it is
more efficient to construct the interpolating polynomial in Newton form rather than the
power form.

Newton form of the interpolant

The Newton form of the polynomial interpolant is motivated as follows: Suppose
we already know the polynomial interpolant px_; to f at the k points x1,...,xk, ie.,
pr—1(z;) = f(z;), j = 1:k, and we want to interpolate f also at zp4;. Rather than
starting from scratch, we propose to construct py in the form

Pr(r) = pr—1(x) + ckp1(z — 1) (T — 22) -+ (T —).

For, no matter how the coefficient cg1 is chosen, this py will interpolate f at z1,..., xx,
and, to make it also interpolate at xjy1, we only have to solve one equation in the one
unknown, cg41. This gives

_ f(-Tk;+1) —pk—1($k+1)
(4) Ck+1 = @rr — 1) (rar —)

If we start this procedure with k£ = 1 and, correspondingly, po(x) = f(x1), we can
build up the interpolating polynomial p,,_; point by point and degree by degree in the
form

(5) pn—1(x) =c1+ca(z—z1)+cs(x—x1) (T —22)+ - Fen(x—x1)(T—21) - - (T —Xp1).

This way of writing a polynomial is called its Newton form (with centers z1,...,2,_1).
It, too, invites use of nested multiplication since we can rewrite it as

pno1(z) =1+ (x —z1)(co+ (x —22)(c3 4+ + (T — Tp_1)Cn),
hence can evaluate it by the following generalization of the earlier script:
v = zeros(size(x));
for k=length(c):-1:1

v=(x-x(k)).*xv + c(k);
end

3 (©2000 Carl de Boor

In fact, if 1 = 292 = ... = 2,1 = 0, then the Newton form (5) simply reduces to the
familiar power form (3).

As it turns out, there is a more useful way of computing the coefficients cq,...,c,
in the Newton form for the interpolating polynomial than by (4), and that is via divided
differences. Here are the basic facts. In the discussion, f is some given function to be
interpolated, zi,...,, is a sequence of pairwise distinct points, and p;.; denotes the
unique polynomial of degree < j — 4 that interpolates to f at the points z;,...,x;.

1. Since p;.; is the unique interpolant of degree < j — ¢ to f at x;,...,x;, its highest
coefficient, i.e., the coefficient of 27, only depends on f. We recognize this by writing
this coefficient as f[z;,...,z;]. In other words,

pij(x) = flziy. .. 2] + Lo.t..

Note that flx;,...,z;]| is a symmetric function of the points x;,...,x; since the in-
terpolating polynomial doesn’t depend on the order in which we write down the in-
terpolation points.
2. Now note that
(CL‘ - xl)pZ:n('x) + (xn - x)plzn—l(x)
In — L1

p(x) =

is a polynomial of degree < n that interpolates to f at x1,...,x,. Indeed, for x = 1,
the first term in the numerator is 0 and what is left reduces to pi.,—1(x1), hence
equals f(z1). The story for x = z,, is similar. Finally, if i = 2:(n—1), then po.,(z;) =
prn—1(z;) = f(x;), i.e., the numerator simplifies to (z,, — x1)f(x;), hence p(z;) =
f(@i).

3. It follows that the p in 2. must be p1.,. In particular, their highest coefficients must
be the same. With the notation introduced in 1., this means that

(6) f[l'l,...,ajn] = f[x2""7xn] _f[xlw";xn—l]'

Tn — 1

This basic formula is, perhaps, easier to remember in the following form:

f[Mva] _f[M7b]

fM.ab] = =2

where M stands for an arbitrary sequence of points, and a and b are two specific points.

This basic formula explains the customary name for f|zq,...,z,]| as a divided dif-
ference of order n — 1, since it shows it to be a difference quotient or ‘divided difference’
of two divided differences of one order less. It also leads to the systematic calculation of
the coefficients in the interpolating polynomial

(7) pnfl(l‘) :plzn(x) :Zf[$1,~~,xk] H(IL‘—Ij)
k=1 i<k

via the divided difference table, as explained in the textbook.

4 (©2000 Carl de Boor

It is this formula for the interpolating polynomial you should commit to memory
since it also gives you the standard error formula for polynomial interpolation, as follows.
Suppose T, 41 is yet another point. Then, by the formula,

n
pl:n+1(x) = pl:n(x) + f[mla vy T4l H T — xg
J=1

In particular, for z = x,41, we obtain

n
f(xn—l—l) — pl:n—l—l('xn—i—l) = pl:n(xn—l—l) + f[xla R 73771—1—1 H LTn4+1 — xj
and this holds for any z,,41 not equal to z1,...,z,. We conclude that, for any x not equal
to T1,..., Ty,
n
(8) F@) = prn(@) + flon, .. zn, 2] [(@ —2y).
j=1

This formula you should commit to memory as well. In fact, if you only remember this
formula, you can derive from it the Newton form for p;.,,. What if x here equals one of the
x;7 Well, then error is zero and the product H?Zl(x — ;) also vanishes, hence, regardless
of what f[z1,...,x,,x] might be in that case, the formula is still correct! It turns out that
the divided difference f[z1,...,xx] makes perfectly good sense even when some or all of
the x; coincide, as the guiding example of f[x1,x5] illustrates: For x1 # xo, f[z1,x2] is the
slope of the secant to f at the points x1 and zs; as x5 — x1, this converges to the slope of
the tangent to f at z1, hence one sets flr1,z1] := f/(z1).

Moreover, recall from Calculus the Mean Value Theorem which says that f[xy,xs] =
f'(n) for some n between x1 and x5. Here is a generalization of this needed before we can
make use of (8).

9 Proposition. If f has n continuous derivatives, then

f[xh <. ,Z’n+1] = f(n)(m/”'
for some point 1 in the smallest interval containing all the points x1,...,Zn4+1.

In other words, an nth divided difference is like a (normalized) nth derivative.
For the proof, assume without loss of generality that z; < x5 < -+ < 2,41 and
consider the error

e:=f— Piin+41-

It vanishes at the points 1 < -+ < z,41. Hence, by Rolle’s Theorem (a special case of
the Mean Value Theorem) and for ¢ = 1:n, its first derivative has a zero between z; and
Zit1, call it wgl), thus getting the n zeros chl) - < :L‘%) of the first derivative e’ of e.
Repeating this argument with ¢’ instead of e, then with e¢” instead of €/, etc., we finally
arrive at the statement that e(™ | the nth derivative of e, vanishes at some point, 1 say,

in the interval (z; .. zp4+1). In other words,
0=e™(n) = F™ () —pil s ().

5 (©2000 Carl de Boor

But p1.,41 is a polynomial of degree < n, hence its nth derivative is simply n! times its
highest coefficient, and that coefficient is, by definition, the number f[zi,...,2,41]. In
other words,

0= f(n)(n) - n!f[xb s ;xn—‘rl]v
which is what we set out to prove. O
Here is a quick use of this error formula. Suppose we want to make a table (x;, f(z;)),
i =0:N, with x; := a+ih, all i, and xy = b, hence h = (b—a)/N, for some given interval
[a .. b] and some given function f. Further, we would like to have as few entries in this
table as we can get away with. Specifically, we want to choose h as large as possible (or,
equivalently, NV as small as possible), subject to the condition that linear interpolation in

this table gives an absolute error no bigger than .0005.
Let z; <z < x;41, for some i. Then we are approximating f(z) by

piit1(x) = f(zi) + floi, i) (@ — 24).

Hence, the absolute error in this approximation is

|f(95> —pi:i+1($)| = ’f[%;%‘ﬂﬁ”w - l‘z||90 — it

Since z; < z < x;41, we know (assuming that f has two derivatives) that

flos, zip1, 2] = f"(n)/2

for some n € [z; .. z;11]. We can also work out that the absolutely biggest value of the

parabola (z — x;)(z — x;41) for x; < x < x;41 occurs at the midpoint where the parabola
has the value (h/2)(—h/2). Therefore, altogether,

(@) = piia(@)] < (max [f"(n)]/2) h*/4.

z; <N<Tiy1

Suppose now that the function is f(z) = sin(z). Then its second derivative is — sin(x),
hence is bounded by 1 in absolute value. Hence our error bound simplifies to h2/8, i.e., it
is sufficient to choose h so that

h?/8 < .0005.

The largest h satisfying this condition is

h* := V8 %.0005 = v.004 ~ .0632.

Suppose further that [0..7/2] is the interval of interest. Then we want the smallest integer
N so that (7/2 —0)/N < h*, i.e., so that

24.83 ~ (/2 —0)/h" < N.
Hence, N = 25 is our best choice.

6 (©2000 Carl de Boor

