
last change: 10oct00

Numerical integration

Basic idea:

(1)

∫ b

a

f(x) dx = (b− a)
m∑

k=1

wkf(xk)

︸ ︷︷ ︸

rule

+ const(b− a)r+1f (r)([a . . b])

︸ ︷︷ ︸

error

,

where the nodes xk are (usually) in the interval [a . . b], the weights wk are scalars, as is
the error constant const, and the strange notation f (r)([a . . b]) stands for some f (r)(η)
with η some (unknown) point in [a . . b]. At times, it is convenient to think of f (r)(a . . b)
equivalently as the interval

f (r)(a . . b) := [ inf
a≤η≤b

f (r)(η) . . sup
a≤η≤b

f (r)(η)]

in which case (1) tells us that the unknown number
∫ b

a
f(x) dx is certain to lie in the

interval rule + const(b− a)r+1f (r)(a . . b).
To help you remember special cases, pay attention to the units used. If, e.g., f(x)

measures the rate at which you consume potatos, then
∫ b

a
f(x) dx gives your total potato

consumption during the time period from a to b. If you measure potatos by the sack, and
time in years, then f(x) would be in units of sacks/year and the integral would be in units
of sacks. But then, both summands on the right must be in sacks, as is obviously the
case for the rule (since the wk are scalars, (b − a) is in years and f(xk) is in sacks/year.
For the error, we notice that f (r) is in (sacks/year)/yearr, while const is a scalar, so the
factor (b − a)r+1 is just right to make the error in units of sacks. (This is an example of
dimensional analysis, as a quick check whether details of a formula are correct.)

The r in the error term tells you the (exact) order of the rule, in that it tells you that
the rule is exact (i.e., the error is zero) whenever f is a polynomial of degree < r, while
the rule is guaranteed to be wrong (i.e., the error is nonzero) for the specific rth degree
polynomial f(x) = xr.

Any choice of nodes a ≤ x1 < · · · < xm ≤ b can be used to construct a rule of order
≥ m simply by integrating the polynomial pm−1 that interpolates the integrand f at those
points: Follow Lagrange in writing pm−1 in the suggestive form

(2) pm−1(x) =
m∑

k=1

f(xk)`k(x), `k(x) :=
∏

j 6=k

x− xj

xk − xj

Indeed, each `k is the product of m− 1 linear terms, hence is a polynomial of degree < m,
therefore, so is the entire right side; also, each `k vanishes at every xi except xk, hence,
at xi, the right side has the value f(xi)`i(xi) and that equals f(xi) since, for x = xi, all
the factors in `i(xi) equal 1. So, altogether, the right side equals f(xi) at xi, i = 1:m.

1 c©2000 Carl de Boor



Since the interpolating polynomial is unique, this must be yet another way of writing it. –
For our present purposes, the Lagrange form (2) of the interpolating polynomial is ideal
since it implies at once that

∫ b

a

pm−1(x) dx = (b− a)

m∑

k=1

f(xk)wk, wk :=

∫ b

a

`k(x) dx/(b− a).

Now, the weights wk are usually not actually calculated this way. One way to compute
them is to observe that exactness for f(x) = xj−1, j = 1:m gives the system of linear
equations

m∑

k=1

xj−1
k wk = (bj − aj)/j, j = 1:m,

with the transpose of the Vandermonde matrix as its coefficient matrix, hence its unique
solution can be obtained with matlab’s backslash operator. However, except for some very
special cases, listed below, one usually looks up the weights and nodes of specific rules
in books or, these days in matlab, gets them from some m-file (e.g., NCWeights in the
book). Such listings give rules for a special interval [a . . b] only, typically [0 . . 1] for the
Newton-Cotes rules, and [−1 . . 1] for the Gauss-Legendre rules, and you must use a linear
change of variables to get the information transferred to the interval [a . . b] of interest.

E.g., if the rule is stated in terms of [−1 . . 1], and you are interested in
∫ b

a
f(x) dx, the

linear change x(t) = a + ((b− a)/2)(t + 1) (NOTE that this x(t) is the linear interpolant
in Newton form for the data (−1, a), (1, b) ) has dx/dt = (b− a)/2, and gives

∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f(x(t)) dt,

and the integral on the right is right for the rule given for the interval [−1 . . 1].

Any rule we are going to consider has at least order 1. Since
∫ b

a
1 dx = (b − a), this

implies that
m∑

k=1

wk = 1

for any rule of interest. In particular, for m = 1, the only choice of w is w = 1.
Here are three specific rules used all the time:

• Midpoint rule

∫ b

a

f(x) dx = (b− a)f((a + b)/2) + (b− a)3/24 f ′′(a . . b), i.e., w = [1];

• Trapezoid rule

∫ b

a

f(x) dx = (b− a)(f(a) + f(b))/2− (b− a)3/12 f ′′(a . . b), i.e., w = [1, 1]/2;

2 c©2000 Carl de Boor



• Simpson’s rule

∫ b

a

f(x) dx = (b− a)(f(a) + 4f((a + b)/2) + f(b))/6− (b− a)5/(90 ∗ 32) f (4)(a . . b),

i.e. w = [1, 4, 1]/6;

Each of these is an example of a Newton-Cotes rule. These rules come in two
flavors. The closed NC(m) rule uses x = linspace(a,b,m); the open NC(m) rule uses
the ‘interior’ points x = xx(2:end-1) of the sequence xx = linspace(a,b,m+2). Both
the open and the closed Newton-Cotes rules have the misfortune that, for higher m, some
weights are negative. For that reason, in a situation requiring a higher m, one either uses
composite rules or else, if the nodes can be chosen at will, one uses Gauss rules.

In any case, the Midpoint rule is the open NC(1), while the Trapezoid Rule is the
closed NC(2) and Simpson’s Rule is the closed NC(3). The NC-rules are entirely deter-
mined by their nodes since they are obtained by integrating the corresponding interpolating
polynomial, as described earlier.

In addition to these rules, there are also the Gauss(-Legendre) rules. The m-point
Gauss rule has the highest-possible order for an m-point rule, namely r = 2m. (An m-
point rule cannot do better than that for the following simple reason: If x1, . . . , xm are the
nodes for the rule, then the 2m-degree polynomial p(x) := (x−x1)

2 · · · (x−xm)2 is positive

except at the nodes, hence
∫ b

a
p(x) dx is bound to be positive (assuming that a < b), yet

our rule will provide the value 0, which therefore must be wrong.) Also, the GL(m) rule
has positive weights for every m.

For various reasons, one usually does not use any of these rules with very large m.
Rather, if a low-m rule does not suffice, one cuts the interval of integration into small
(enough) pieces and uses one of these simple rules on each interval, thus getting the cor-
responding composite rule.

Here is again an opportunity to avoid a loop (an opportunity not taken by our text-
book). For simplicity, I discuss this question in the special context of the composite
NC(3)-rule.

Suppose we cut [a . . b] into n equal pieces, each of length

h := (b− a)/n,

and want to use the closed NC(3) on each of them. This makes our approximation to the
integral the double sum:

h · (w1f(a) + w2f(a + h/2) + w3f(a + h))

+ h · (w1f(a + h) + w2f(a + 3h/2) + w3f(a + 2h))

+ h · (w1f(a + 2h) + w2f(a + 5h/2) + w3f(a + 3h))

. . .

+ h · (w1f(b− h) + w2f(b− h/2) + w3f(b))

3 c©2000 Carl de Boor



If we can arrange these various function values into the matrix

F :=








f(a) f(a + h/2) f(a + h)
f(a + h) f(a + 3h/2) f(a + 2h)
f(a + 2h) f(a + 5h/2) f(a + 3h)

. . .
f(b− h) f(b− h/2) f(b)








,

then the calculation of our sum is simple: Applying the matrix F to the column vector
w of weights, gives us the appropriately weighted sum of the columns of F, summing the
resulting vector F*w does the rest. In matlab, this would be

h*sum(F*w)

or, better yet (as it avoids almost all multiplications)

h*(sum(F)*w)

in which we make use of the fact that matlab’s sum command works columnwise when
applied to a matrix (rather than a vector). WARNING: If F happens to have just one
row, (i.e., if n = 1), then sum(F) will be just a number, namely the sum of the entries in
the sole row of F, and this has rather shocking consequences in the present context. So, if
you want to make sure, use instead sum(F,1), i.e., specify explicitly in which dimension
you want to do the summing. This is something to pay attention to in the meaning of sum
(and prod, max, min) when writing general purpose m-files like the one we are working on!

This leaves the question of how to organize the function values into the matrix F.
Here is one way, using matlab’s reshape(A,M,N) command. This command generates the
matrix of size [M,N] that has, in its first column, the first M entries of A, in its second
column the next M entries of A, etc. What if A is not a vector but a matrix? Then matlab

first makes a column-vector from it, taking its first column, then its next column, etc., i.e.,
treat it as you had written A(:) instead of A. E.g., the matrix [1 2 3;4 5 6] taken as a
column-vector would be [1;4;2;5;3;6], hence reshape([1 2 3;4 5 6],3,2) would give
the matrix [1 5;4 3;2 6]. (It is worthwhile to play around with simple examples directly
in matlab to get a good feel for this important matlab tool.)

Here is how reshape might be used in our problem. We need the value of f at
all the points x = linspace(a,b,1+n*2) since we are using the closed NC(3) for our
simple rule. If we were using, more generally, the closed NC(m), we would want x =

linspace(a,b,1+n*(m-1)) . So, let y = f(x). Then, for our special case m − 1 = 2,
reshape(y(2:length(y)), 2, n) gives the rearrangement of the sequence y(2), y(3),

..., y(1+2*n) into the matrix with 2 rows and n columns in which the first 2 entries
make up the first column, the next 2 entries make up the second column, etc. . Hence, if
we also transpose this matrix, i.e., compute

reshape(y(2:length(y)), 2 , n)’;

4 c©2000 Carl de Boor



then ans will look like this:

y(2) y(3)
y(4) y(5)
y(6) y(7)

...
y(2*n-2) y(2*n-1)
y(2*n) y(2*n+1)

But this says that the final construct

F = [ [y(1); ans(1:n-1,2)] ans ];

gives the desired matrix since its first column has in it the entries y(1), y(3), y(5),

..., y(2*n-1) , hence the whole assembled F is the matrix

y(1) y(2) y(3)
y(3) y(4) y(5)
y(5) y(6) y(7)
...
y(2*n-1) y(2*n) y(2*n+1)

i.e., exactly what we wanted.
This is what is done in the following version of the function CompQNC on pages 146-7

of the book:

function numI = CompQNC(fname,a,b,m,n)
% numI = CompQNC(fname,a,b,m,n)
%
% Integrates a function of the form f(x) named by the string fname from a to b.
% f must be defined on [a..b] and it must return a column vector if x is a
% column vector. m is an integer that satisfies 2 <= m <= 11.
% numI is the composite m-point Newton-Cotes approximation of the integral of f
% from a to b with n equal length subintervals.
%

h = (b-a)/n;
w = NCWeights(m);
x = linspace(a,b,1+n*(m-1))’; % transposition needed in case fname

% expects x to be a column vector.
y = feval(fname,x);
if n==1, numI = h*(y.’*w); return, end
reshape(y(2:length(y)),m-1,n).’;
numI = h*(sum([[y(1);ans(1:n-1,m-1)] ans])*w);

5 c©2000 Carl de Boor


