last change: 120ct00

Numerical integration cont.

Use of the error term: For any simple quadrature rule Q(f) of order r, we have

b
(1) / f(z)dz = Q(f) 4 const(b — a)™ 1 fF((a .. b),

with f(")(a ..b) denoting some number from the interval

f(r)(a ..b) :=[min f(r)(n) .. max f(r)(n)].

a<n<b as<n<b

So, if we can determine this interval, then we know that the number f; f(z)dx must lie

in the interval Q(f) + const(b — a)"1 " (a .. b).
However, it may be even harder to obtain this interval precisely than it is to evaluate
the integral. So, one usually is content with getting some bound M for which

() <
Jnax, ()] < M,

which then gives the much cruder error bound

b
\/ f(z)dz — Q(f)| < |const||b —a|" "t M.

Things are more interesting for composite rules. The composite rule @, (f) using the
simple rule @ of order r on n equal subintervals of [a .. b] has the error term

b—a

2) / " F() d = Qu(f) + const(b - a) ()rf(”(a b,

with const the same error constant as in the error for the simple rule). This error term
is obtained in the following way: With ¢; := a+ih, i =0:n and h := (b—a)/n, we apply
the simple rule Q(f) = Q(f,a,b) in (1) to each of the intervals [¢; .. ¢;11] to find

b n—1 n—1
/ f(z)dz = Z Q(f tistivr) + Z consth™ ™ f(t; .. ti11).
a i=0 i=0

After replacing each f(")(t; .. t;41) by the larger interval f(")(a ..b), all the summands in
the second sum become the same and, using the fact that nh = b — a, we obtain the error
term in the composite rule (2).

But now the error has a parameter we can play with, namely the number n. By
making n large, we can, in principle, making the error as small as we like. Also, the bigger
the order r, the faster the error goes to zero as n grows large.

1 (©2000 Carl de Boor

The typical calculation proceeds as follows: With that bound M on |f(| in hand,
and for a prescribed error tolerance tol, one ‘solves’ the inequality

const|b — a|" T M /n" < tol
for the smallest integer n that satisfies it, namely, in matlab terms:
n = ceil((const (b-a)~(r+1) M)~ (1/1));

and uses it.

There are two difficulties with this: one may have difficulty even getting a good bound
M ; and, the error bound for the composite rule used here is too inaccurate since, after all,
we obtained it by replacing each f(")(t; .. ;1) by the possibly much larger f(a..b).

In adaptive quadrature, one tries to choose the partition a = tog < t; < ... <t, =b
in such a way that the individual error contributions (At;)"** (") (¢; .. t;41) are, roughly
of the same size, thus taking small intervals only where |f (7”)] is ‘large’, while getting away
with a few large intervals where |f(")| is comparatively small. Further, one makes up for
not knowing f(" all that well by trying to guess the error from two rules of the same
order. Here are the details:

Assume that the interval under consideration is so small that ("), i.e., f (”)(a .. b) is,
essentially, a constant. Then, on abbreviating the terms in (2) as follows:

I'=Qn(f) + En,
we conclude that
Esgy = const(b—a)™ 1/ (2n)" f(a..b) = E, /2",
ie.,
Qn(f) + 2" B2 = I = Qan(f) + Eon,

which we can solve for Ey,, to find

_ Q) - Qulf)

Eon,
(3) 2 2r_1

Now, this may or may not be a good estimate for the error; it all depends on whether
the assumption made, namely that f(") doesn’t vary much over the interval [a..b], actually
holds. For a small enough interval, this will be the case, and then we might as well add this
estimate for the error to our approximate value @2, (f) for an even better approximation

Qan(f) = @n(f)
or —1

Since this better estimate is based on a certain model of convergence of @, (f) as n — oo,
this process of getting a better approximation is also called extrapolation to the limit.

The book describes the use of such error estimates in adaptive quadrature quite well.
To that description, I want to add that professional quadrature packages use a Gauss rule
as the underlying simple rule rather than a NC rule.

2 (©2000 Carl de Boor

