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roots of equations aka zeros of functions

Finding a root r of the equation f(?) = 0 or, equivalently, finding a zero r of the function f involves
three aspects:
(i) where to look;
(ii) what to look for;
(iii) how to look.

where to look: typically, one is given some interval [a . . b] in which to find a zero. Different choices of
[a . . b] may well lead to different roots even if one interval is contained in the other. If the specified interval
is too large, one may never find a zero.

what to look for: This seems to be a stupid question; one is, after all, looking for a zero, i.e., some
r for which f(r) = 0. But, consider: The equation sin(?) = 0 does have exactly one root in the interval
[π/2 . . 3π/2], namely r = π. However, none of the typical floatingpoint numbers in a machine are exactly
equal to π. Correspondingly, there may be no x in our machine for which sin(x) = 0 (exactly). An even
simpler example is provided by the equation (?)2 = 2 whose sole positive root is the number

√
2 = 1.4142 . . .

which is not one of the floatingpoint numbers available in one’s machine.
In addition, there is the question of noise. Typically, if a function vanishes (i.e., has a zero) at r,

then the formula for that function is likely to involve a sum of terms which, at r, add up to zero. This can
only happen through loss of significance. It means that, very close to r, the computed function values are
essentially just noise, as the figure on page 45 of the book which shows values near its only zero, x = 1, of
the polynomial

p(x) := 1− 6x + 15x2 − 20x3 + 15x4 − 6x5 + x6

evaluated in single-precision (i.e., carrying about 7 decimal digits), using the nested form to keep down the
noise (which doesn’t help much in this case).

From this plot, any number z in the interval [(.9) . .(1.1)] could be judged a ‘zero’ for the function f = p,
by either one of the two standard criteria for z to be a ‘zero’:
• |f(z)| is no bigger than the noise in the computed function values.
• There are points a ≤ z ≤ b close to z for which f(a)f(b) ≤ 0, hence, assuming that f is continuous,

f must have a zero, r, in this interval, hence our z is close to that zero in the sense that the resulting
bound |r − z| ≤ |a− b|/2 is small.

how to look for a zero: There are two basic ideas for this.

first idea: bracketing the zero If we know that f is continuous on the interval [a . . b] and that
f(a)f(b) ≤ 0, then, by the Intermediate-Value Theorem, we know that f(r) = 0 for some r ∈ [a . . b]. In
particular, we know that the midpoint, c := (a + b)/2 is within |a− b|/2 of any such zero. This leads to the
bisection method and its more sophisticated variants, with the c just computed the initial guess, x0, for the
zero.

The basic method along these lines is bisection.

second idea: approximating the function We have already some good approximation, xn say,
and know a straight line which is a ‘good’ approximation to f near xn. Then we compute exactly the zero
of that straight line, and that becomes our next approximation, xn+1. Newton’s method is the best-known
method in this class.

termination criteria: All root-finding methods are iterative; one repeats the same steps “until sat-
isfied”. This can mean several things. With c our most recent guess at the root, r, one might stop if (i)
|f(c)| < Tolf or if |c− r| < Tolx (this second criterion requires some way of knowing how close one is to r;
this is something one knows with root bracketing, but may not know with Newton’s method or the Secant
method). In addition, one should also terminate if the number of iteration steps exceeds a certain bound,
either built-in or explicitly specified.
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comparison of methods

Bisection is reliable (one always brackets a root (unless noise becomes overwhelming)), but slow (one
gains one binary digit of accuracy with every step, i.e., per one function evaluation).

Newton is much faster, but not at all reliable, unless one starts sufficiently close to a zero. Difficulties:
(i) shot in the dark, meaning that the straight line (tangent) is relatively flat, so its zero is far away from
the current guess. (ii) cycling example: for the function f(x) = x3 − x, the guess a = 1/

√
5 for its zero 0

gives the next guess b = −a, hence the next guess after that is a again.
The methods actually used in good software are hybrid, combining the safety of bisection with the

speed of secant. One such method is the Modified Regula Falsi aka Illinois method: At every step, one
has in hand an interval with endpoints a and b, of which b is the most recently obtained approximation to the
root, and f changes sign on that interval, i.e., f(a)f(b) ≤ 0. One computes c as the unique point at which
the straight line through the points (a, fa) and (b, fb) crosses the x-axis and, correspondingly, fc := f(c).

I also discussed matlab’s general-pupose root-finding command fzero.

comment concerning functions in matlab: Rootfinding commands, like fzero or your very own
bisect and secant, must somehow be told about the function f whose zero(s) they are supposed to find.
This is done by using the name of that function as an input argument.

If, e.g., the function is f(x) = sin(x), then its appropriate name here is the string ’sin’.
If you have made up a function m-file called myfun.m so that the matlab command v = myfun(x);

provides the value of f at the point x, then the appropriate name to use is the string ’myfun’. E.g., for the
function f(x) = x2 − 3x + 1, you might write the function m-file having just the two lines

function v = myfun(x)
v = (x - 3)*x + 1;

If the formula for f(x) is pretty simple, you might want to make up an inline function. E.g., if
f(x) = x2 − 3x + 1, the command

f = inline(’(x-3)*x+1’);

provides, in f, a name that you can pass on to your favorite rootfinding command. (I believe that inline
functions were not available prior to version 5 of Matlab.)

How is this name actually used inside the rootfinding m-file? If f is the name, then

v = feval(f,x);

provides the value of that function at the point x.
As you make up functions, be sure to enable the function to deal with a whole vector or even matrix x,

as do the built-in elementary functions, like sin, in order to avoid using loops. E.g., in the above example,
the multiplication should be pointwise, meaning that the formula should be (x-3).*x + 1 .
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